
２．Cellular Automata
automata： golem → automatic machine, sequential machine
［John von Neuman］

Autonomously replicating automata： self-propagating program with local 
neighborhood rule, discrete system

Cellular automata
２．１ general items of cellular automata
（１）definition of cellular automata

Software ‘objects' (short algorithms) running under the control of a special computer program 
(such as the ‘Game Of Life') and represented on the monitor screen as small squares, triangles, 
or other shapes called ‘cells'. Each cell is connected to its neighboring cells by a set of simple 
rules which also govern which state out of several a cell (such as color, movement, and 
replication) can have at any given moment. The program begins usually with one or a few cells 
which trace a simple and often predictable pattern. But as the program progresses (simulates 
changing environments and random mutations) the number of cells increases and the pattern 
becomes exceedingly intricate and completely unpredictable, sometimes mimicking the 
behavior of complex adaptive systems (such as live biological cells). In some patterns, for 
example, cells 'fight' over temitory and may even ‘kill' one another (stop the growth of the 
pattern). The usefulness of cellular automata (at present) lies in their ability to model certain 
biological, economic, physical, and sociological phenomenon, and in showing how their 
components or parts may interact if conditions change. The concept of cellular automata was 
proposed by the Hungarian-US mathematician John von Neumann (1903-1957) and developed 
and put into practice by the UK mathematician John Conway (born 1937) in his 'Game Of Life 
simulation.' Called also artificial life (A-life).



② new value based on some values 
of local neighboring cites

developing by discrete time step

Assuming states in past several time steps

（２）CA lattice
［one dimension］

Cellular automata＝linear list   Table[expr, {i, 1, s}]

① discrete system
lattice cite having various initial value

n

m
［two dimension］

rectangular lattice，triangle lattice，hexagonal lattice

Rectangular lattice n×m
Table[expr, {i, 1, n}, {j, 1, m}]



Various two dimensional cellular automata
game of life, lattice gas automata, Petri net, L system,
multi agent system

（Petri net）
place token

transition

arc

A Petri net (also known as a place/transition net or P/T net) is one of several mathematical modeling 
langauges for the description of discrete distributed systems. A Petri net is a directed bipartite graph, in 
which the nodes represent transitions (i.e. discrete events that may occur), places (i.e. conditions), and 
directed arcs (that describe which places are pre- and/or postconditions for which transitions). Petri nets 
were invented in August 1939 by Carl Adam Petri – at the age of 13 – for the purpose of describing 
chemical processes.

Like industry standards such as UML activity diagrams, BPMN and EPCs, Petri nets offer a graphical 
notation for stepwise processes that include choice, iteration, and concurrent execution. Unlike these 
standards, Petri nets have an exact mathematical definition of their execution semantics, with a well-
developed mathematical theory for process analysis.

A Petri net consists of places, transitions, and directed arcs. Arcs run between places and transitions, 
never between places or between transitions. The places from which an arc runs to a transition are called the 
input places of the transition; the places to which arcs run from a transition are called the output places of 
the transition. Places may contain any non-negative number of tokens. A distribution of tokens over the 
places of a net is called a marking. A transition of a Petri net may fire whenever there is a token at the end 
of all input arcs; when it fires, it consumes these tokens, and places tokens at the end of all output arcs. A 
firing is atomic, i.e., a single non-interruptible step.

Execution of Petri nets is nondeterministic: when multiple transitions are enabled at the same time, any 
one of them may fire. If a transition is enabled, it may fire, but it doesn't have to.
Since firing is nondeterministic, and multiple tokens may be present anywhere in the net (even in the same 
place), Petri nets are well suited for modeling the concurent behavior of distributed systems.



Syntax
A Petri net graph (called Petri net by some, but see below) is a 3-tuple (S,T,W) , where
S is a finite set of places
T is a finite set of transitions
S and T are disjoint, i.e. no object can be both a place and a transition 

is a multiset of arcs, i.e. it defines arcs and assigns to each arc a non-
negative integer arc multiplicity; note that no arc may connect two places or two transitions. 
The flow relation is the set of arcs: . In many textbooks, arcs can only have 
multiplicity 1, and they often define Petri nets using F instead of W.
A Petri net graph is a bipartite multigraph with node partitions S and T.
The preset of a transition t is the set of its input places:  ; its postset is 
the set of its output places:  
A marking of a Petri net (graph) is a multiset of its places, i.e., a mapping M:S N. We say the 
marking assigns to each place a number of tokens.
A Petri net (called marked Petri net by some, see above) is a 4-tuple  （S, T, W, M0）, where
(S,T,W) is a Petri net graph; 
M0 is the initial marking, a marking of the Petri net graph. 
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Application areas
Software design, Workflow management , Data analysis, Concurrent programming ,
Reliability engineering , Diagnosis ,  Discrete process control 



Execution semantics
The behavior of a Petri net is defined as a relation on its markings, as follows.
Note that markings can be added like any multiset:  
The execution of a Petri net graph G=(S, T, W)  can be defined as the transition relation
on its markings, 
In words:
・firing a transition t in a marking M consumes W(s,t) tokens from each of its input places s, and 

produces W(t,s) tokens in each of its output places s
・a transition is enabled (it may fire) in M if there are enough tokens in its input places for the 

consumptions to be possible, i.e. iff . 
We are generally interested in what may happen when transitions may continually fire in 
arbitrary order.
We say that a marking M‘ is reachable from a marking M in one step if  ; we say 
that it is reachable from M if , where          is the transitive closure of           ; that 
is, if it is reachable in 0 or more steps.
For a (marked) Petri net  , we are interested in the firings that can be performed starting with the 
initial marking M0. Its set of reachable markings is the set  
The reachability graph of N is the transition relation   restricted to its reachable markings R(N). 
It is the state space of the net.
A firing sequence for a Petri net with graph G and initial marking M0 is a sequence of 
transitions   such that  . The set of firing sequences is denoted as L(N).
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( L system)
L system (Lindenmayer system, Universiteit Utrecht)  is a kind of formal grammar in information science, 
and an algorithm which represents various natural structure, such as growth of a plant. Besides it is used 
to generate iterated function system, such as self similar figure and fractal figure.

Structure of L system
Chomsky hierarchy, tuple
G = {V, S, ω, P},
V(letter): variable, S: constant, 
ω: initial state of V, P: rule changing V

Examples of L system

(alga)  V: A, B   S: - ,   w: A,   P: (A AB), (B A)
n=0: A
n=1: AB
n=2: ABA
n=3: ABAAB
n=4: ABAABABA

A
B



Fibonacci series (1 1 2 3 5 8 13 21 34 55 89 - - -)
V: A, B   S: - ,   w: A,   P: (A B), (B AB)

n = 0 ： A 
n = 1 ： B 
n = 2 ： AB 
n = 3 ： BAB 
n = 4 ： ABBAB 
n = 5 ： BABABBAB 
n = 6 ： ABBABBABABBAB

n = 7 ： BABABBABABBABBABABBAB

Cantor set
V: A, B   S: - ,   w: A,   P: (A ABA), (B BBB)

n = 0 ： A 
n = 1 ： ABA 
n = 2 ： ABABBBABA 

n = 3 ： ABABBBABABBBBBBBBBABABBBABAKoch curve
V: F   S: +, - ,   w: F,   P: (F F+F-F-F+F)
n=0: F

n=1: F+F-F-F+F
n=2: F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F
n=3: F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-

F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F- F+F-F-F+F+F+F-F-F+F-
F+F-F-F+F-F+F-F-F+F+F+F-F-F+F+ F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F



E
S

W
N

（３） neighborhood of CA
von Neumann neighborhood

It is the smallest symmetric 2D aligned neighborhood usually 
described by directions on the compass N = {N,W,C,E,S} 
sometimes the central cell is omitted.
Formal definition 
Formally the von Neumann neighborhood is the set of neighbors

N = {{0, − 1},{ − 1,0},{0,0},{ + 1,0},{0, + 1}} 
or a subset of the rectangular neighborhood size kx = ky = 3 with 
the output cell at the center k0x = k0y = 1.

Moore neighborhood
Is a simple square (usually 3×3 cells) with the output cell in 

the center. Usually cells in the neighborhood are described by 
directions on the compass N = {NW,N,NE,W,C,E,SW,S,SE} 
sometimes the central cell is omitted.
Formal definition 
Formally the Moore neighborhood is the set of neighbors

N = {{ − 1, − 1},{0, − 1},{1, − 1},{ − 1,0},{0,0},{ + 
1,0},{ − 1, + 1},{0, + 1},{1, + 1}} 

or simply a square size kx = ky = 3 with the output cell at the 
center k0x = k0y = 1.

NW   N  NE

W E
SW S  SE



（４）boundary condition

1     2     3
4     5     6
7     8     9

10   11   12
Moore neighborhood of simple lattice

12   10   11
3 1 2 3
6     4     5 6

7     8     9
10   11   12

0     0     0    0    0
0 1 2 3    0
0     4     5 6    0
0     7     8     9    0
0   10   11   12    0
0     0     0     0    0

9    10   11
12 1 2 3

3    4     5 6
7     8     9

10   11   12

［periodic boundary］

［absorption boundary］
［oblique boundary]



２．２ The Game of Life
The Game of Life is a simple mathematical system invented by 

John Horton Conway (Cambridge University). It is an infinite two
dimensional toy universe, which we call here simply C. Parts of 
this universe can be easily embedded on the computer and 
observed on the display screen. A pixel of the screen corresponds 
to its smallest element and can be in one of two colors. To see the 
universe evolve all you have to do is to specify the initial state. The 
pattern of b) can be an initial state. Except for a few black 
pixel/elements all other elements of the universe are white. After 
evolution starts you see a succession of new states. After several 
discrete time steps (generations) the pattern of b) evolves to a
simple periodic pattern of period 2 known as traffic lights. The 
pattern of c) disappears after only three generations. The r-
pentomino pattern of a) is growing. 

a) b) c) d) e)



・ pioneer of artificial life system
・ “intelligent agent” on a computer
・ program of world’s first parallel computer “connecting machine”

・ transition rule of cellular automata ⇒ coding in gene

・ large scale cellular automata ⇒ neural network

・ human’s brain＝network constituted of several billion elements
⇒ autonomous constitution

（rules）
・ periodic boundary condition, two dimensional square lattice
・ Moore neighborhood
・ It dies when there is no mate or there are excessive mates in  

neighborhood it lives when the number of mates is 
appropriate.



（１）If it has two 1 in neighborhood, it does not change.

（２）If it has three 1 in neighborhood, it becomes 1.

（３）In different cases from (1)(2) it becomes 0.

１（ ），０（ ）



［various kinds of patterns］

（stable type）

（oscillating type）



＝

Number of 1 in neighborhood

（moving type）glider

3 2



Algorithm (mathematica）

(1)Initial arrangement
initconfig = Table[Random[Integer], {s}, {s}]

(2) Assign the number of most neighboring living cites to matrices
In[1] := livingNghbrs[mat_] := Apply[Plus, 

Map[RotateRight[mat, #]&,
{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1},
{0, 1}, {1, -1}, {1, 0}, {1, 1}}]] 1

1

-1 0
-1

(example)

In(2) := (board = Table[Random[Integer], {4}, {4}]) //MatrixForm
Out[2]//MatrixForm = 0    1    1     1

0    1    0     1
0    0    0     0
1    0    1     0



In[3] := (livingNghbrs[board]) //MatrixForm
Out[3]//MatrixForm = 5 4     5    4

4 2     5    2
3 3     3    3
2     4     3    4

Out[4]//MatrixForm = 0  1  0     1  0  1     0  1  0     1  0  1
1  0  1     0  1  1     1  1  1     1  1  0
1  0  1     0  1  0     1  0  1     0  1  0

1  0  1     0  1  1     1  1  1     1  1  0
1  0  1     0  1  0     1  0  1     0  1  0
0  0  0     0  0  0     0  0  0     0  0  0

1  0  1     0  1  0     1  0  1     0  1  0
0  0  0     0  0  0     0  0  0     0  0  0
0  1  0     1  0  1     0  1  0     1  0  1

0  0  0     0  0  0     0  0  0     0  0  0
0  1  0     1  0  1     0  1  0     1  0  1
1  0  1     0  1  1     1  1  1     1  1  0

In[4] := bc = Join[{Last[#]}, #, {First[#]}]&;
Partition[bc[Map[bc, board]],{3, 3}, {1, 1}]//MatrixForm

(3) Rule of life and death
update[1, 2] := 1
update[_, 3] := 1
update[_, _] := 0



In[5] := Attributes[g] = Listable;
g[board, livingNghbrs[board]] //MatrixForm

In[6] := update[1, 2] := 1
update[_, 3] := 1
update[_, _] := 0
Attributes[update] =Listable;
update[board, livingNghbrs[board]] //MatrixForm

Out[5]//MatrixForm = g[0, 5]    g[1, 4]    g[1, 5]    g[1, 4] 
g[0, 4]    g[1, 2]    g[0, 5]    g[1, 2]
g[0, 3]    g[0, 3]    g[0, 3]    g[0, 3]
g[1, 2]    g[0, 4]    g[1, 3]    g[0, 4]

update[1, 2] := 1
update[_, 3] := 1
update[_, _] := 0

Out[6]//MatrixForm = 0   0   0   0
0   1   0   1
1   1   1   1
1   0   1   0



Program of life game In[1] := LifeGame[s_, t_] :=
Module[{initconfig, livingNghbrs, update},

initconfig = Table[Random[Integer], {s}, {s}];
livingNghbrs[mat_] := 

Apply[Plus, Map[RotateRight[mat, #]&,
{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1},
{0, 1}, {1, -1}, {1, 0}, {1, 1}}]];

update[1, 2] := 1;
update[_, 3] := 1;
update[_, _] := 0;
Attributes[update] =Listable;
FixedPointList[update[#, livingNghbrs[#]]&,

initconfig, t]
]

（graphic representation） In[3] := Showlife[list_, opts_ _ _Rule] :=
Map[(Show[Graphics[RasterArray[

Reverse[list[[#]]/.
{1 -> RGBColor[1, 0, 0], 
0 -> RGBColor[0, 0, 0]}]],

AspectRatio ->Automatic,
opts]])&,

Range[Length[list]]]



Animation cell
50×50 lattice



（life-forms）

glider
glider[x_, y_] :={{x, y}, {x+1, y}, {x+2, y}, {x+2, y+1}, {x+1, y+2}}

beehive
beehive[x_, y_] :={{x, y}, {x, y +1}, {x, y +2}, {x, y +3},{x, y+4}, {x, y+5}, {x, y+5}}

(x, y)

(x, y)



（diffusion）

Melt[r_, s_, t_] := Module[{init, ngbrsAve},
init = Table[Random[Integer, {0, r}], {s}, {s}];
ngbrsAve[mat_] := Floor[Apply[Plus,

Map[RotateRight[mat, #]&,
{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, 

{0, 1}, {1, -1}, {1, 0}, {1, 1}}]]/8];
NestList[ngbrsAve, init, t]]

Appearance in which molecules diffuse
Model of thermal conductance in substrate
r =0~255
r represents concentration and temperature. 225

220

218

210 192

（boiling）

Rug[r_, s_, t_] := Module[{init, ngbrsAve},
init = Table[Random[Integer, {0, r-1}], {s}, {s}];
ngbrsAve[mat_] := Floor[Apply[Plus,

Map[RotateRight[mat, #]&,
{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, 

{0, 1}, {1, -1}, {1, 0}, {1, 1}}]]/8];
NestList[ngbrsAve[#] +1], r]&, init, t]]

Modeling of phase transition from liquid to gas

・ updated value of cite 0⇒≥
⇒<

rx
xrx

x = average value of 8 most neighborhood cites + 1

bulb



（weathering）

In[1]:= Print[“ The CA Vote Rule Table”];
TableForm[{Range[0, 9],

{0, 0, 0, 0, 1, 0, 1, 1, 1, 1}},
TableHeadings ->

{{“Some over neighborhood”, “New cell value”},
None}]

CA Vote Rule Table
Sum over neighborhood   0  1  2  3  4  5  6  7  8  9
New cell value                  0  0  0  0  1  0  1  1  1  1 

・ modeling of “smoothing” irregular end
・ value of cite＝0 or 1

updated value＝large number in 9 neighborhood cites

VoteNearCallsToLosers[s_, t_] := 
Module[{rule, init, ngbrhdTotal},
init = Table[Random[Integer], {s}, {s}];
ngbrhdTotal[mat_] := Apply[Plus, Map[RotateRight[mat, #]&,

{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, 
{0, 0}, {1, -1}, {1, 0}, {1, 1}}]];

rule[5] := 0;
rule[x_] := Floor[x/4];
Attributes[rule] = Listable;
NestList[rule[ngbrhdTotal[#]]&, init, t]]


