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ABSTRACT

As a paradigm of non-linear systems, we numerically study and visualize Taylor vortex flow between two
concentric rotating cylinders with finite length.  The governing equations are the unsteady Navier-Stokes
equations.  The outer cylinder wall and the upper and lower end walls of the gap are stationary, and the
inner cylinder begins to rotate with constant accelerations.  The main parameters which determine the modes
of the Taylor vortex flow are the aspect ratio and the Reynolds number.  The former is defined by the ratio of
the cylinder length to the gap between cylinders, and the latter is determined by the inner cylinder speed as
the representative velocity.  We have found that, when the aspect ratio and the Reynolds number are fixed,
the final modes of flows depend on the acceleration rate of the inner cylinder.  Even though the same modes
appear under the fixed aspect ratio and the Reynolds number, the developing processes may be different.
This indicates that the acceleration rate of the inner cylinder significantly influences the final mode of flows
between cylinders with finite length.

1  INTRODUCTION

After Benjamin’s [1] study, the Taylor vortex flow between two concentric rotating cylinders with
finite length has been investigated from various viewpoints.  The aspect ratio ?  and the Reynolds
number Re are considered as the main parameters which determine the modes of the Taylor vortex
flow [2][3][4].  The aspect ratio ?  is defined as the ratio of the cylinder length to the gap between
cylinders, and the Reynolds number Re is based on the rotation speed of the inner cylinder.  One
major character in the Taylor vortex flow is its non-uniqueness.  The difference of the inner
cylinder acceleration rate causes the various modes, even though the aspect ratio and the Reynolds
number are fixed.  Alziary de Roquefort and Grillaud [5] analyzed numerically the non-uniqueness
by using steady axisymmetric Navier Stokes equations formulated by the finite difference method.
Lücke et. al. [6][7] used the unsteady equations, and they reported that Ekman-vortices which
develop on the stationary end walls cause the bulk Taylor vortex flow.  Kuo and Ball [8] conducted
their three dimensional numerical simulation, and they found the steady modes when the rotational
speed of the inner cylinder was gradually increased from zero.  Bielek et. al. [9] observed
experimentally the formation of Taylor vortices after sudden starts of the inner cylinder.  They did
not state the mode formation processes and the effect of the acceleration rate of the inner cylinder.
In this study, the flow visualization numerically demonstrates the mode formation process of the
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Taylor vortex flow between two concentric cylinders.  Under the condition that the aspect ratio and
the Reynolds number are fixed, the speed of the inner cylinder is increased from zero at various
acceleration rate.  We also have investigated the mode formation process from the sudden-start of
the inner cylinder in the case that ?  and Re are varied [10].

2  NUMERICAL METHOD
The governing equations are the unsteady axisymmetric Navier-Stokes equations and the equation
of continuity, which are expressed in the cylindrical coordinates (r, ? , z) and velocity components
(u, v, w) respective directions.
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Staggered grid is used in this calculation.  The number of grid points in the radial direction is
41, and the number of grid points in the axial direction is determined by the proportionality to the
cylinder length with 42 points for an aspect ratio of unity.  The number of grid points used in the
present calculation is estimated thick enough not to influence the results, and the time interval fills
the CFL conditions.  The basic solution procedure is the MAC method, and the time integration is
the Euler explicit method.  The spatial differentiation is the QUICK method for convection terms
and the second-order central difference method for other terms.  All physical parameters are made
dimensionless by using the characteristic length which is the gap between cylinders, the
characteristic velocity which is the maximum circumferential rotation speed attained during each
calculation, and the characteristic time defined as the ratio of the characteristic length to the
characteristic velocity.  The inner cylinder speed is accelerated from zero at various rate.  The
initial conditions are that all velocity components are zero in the entire domain.  The outer cylinder
side, the upper edge and lower cylinder edge are stationary.  The boundary conditions at the
cylinder walls and both end walls are no-slip conditions for velocity components and Neumann
conditions for pressure which are obtained from momentum equations.  The Stokes stream function
?  is used for visualizing the calculated results.

3  RESULTS

Table 1 shows the modes of the Taylor vortex flow in the case that the inner cylinder is accelerated
at various rate at ?  = 4.0 and Re = 1000.  Each column of the table indicates the non-dimensional
acceleration time T, flow mode and the mean kinetic energy E in (r, z) plane, which is defined by
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where S is an integral domain and A is the area of a meridional section.
At ?  = 4.0 and Re = 1000, three different modes appear, which depend on the acceleration

time of the inner cylinder: the anomalous four-cell mode (A4), the normal four-cell mode (N4) and

T 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0
Mode A4 (1) N4 (1) N4 (1) N4 (1) A4 (2) A4 (2) A4 (2) A4 (2) A4 (2) A4 (2) A4 (2)

E 0.06916 0.07165 0.07165 0.07165 0.06916 0.06916 0.06916 0.06916 0.06916 0.06916 0.06916

T 36.0 48.0 54.0 60.0 72.0 90.0 120.0 180.0 240.0 300.0
Mode N4 (1) N4 (1) N4 (1) A4 (3) A4 (3) N4 (2) N2 (1) N4 (3) N2 (2) N4 (3)

E 0.07165 0.07165 0.07165 0.06916 0.06916 0.07165 0.08071 0.07165 0.08071 0.07165

Table 1.  The modes of the Taylor vortex flow ( ?  = 4.0,  Re  = 1000 ).
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the normal two-cell mode  (N2).  The mean kinetic energy E is same if the final mode is same.  As
an example of mode formation processes, Fig. 1 shows the mode formation processes to the normal
two-cell mode at T = 120.  In the figure, the rotating inner cylinder is on the left and the stationary
outer cylinder is on the right.  Figure 1 illustrates the time variations of ?  counters in the (r, z)
plane.  The warm color area shows a vortex rotating in a clockwise direction and a vortex rotating
in a counter-clockwise direction is shown cold color area.  First, the vortices develop from the inner
upper and the inner lower corners of the cylinders.  Then the vortices grow in the axial direction,
and the flow field has ten vortices.  Finally, the top and bottom vortices enlarge, and flow field
becomes the normal two-cell mode.

To determine the number of vortices quantitatively, Fig. 2 shows the power spectrum of the
integrated ?  in the radial direction, which is determined by.
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where D is the gap length between cylinders and P is the finite domain in the axial direction.  The
dominant frequency shifts from 2 to 4, 5 and 1.  The flow mode is established about t = 40.  From
this, we can say quantitatively that the flow field has two vortices.
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Fig. 2.  Power spectrum of integrated ? ?( ?  = 4.0, Re = 1000, T = 120 ).

Fig. 1.  Mode formation process of the normal
two-cell mode ( ?  = 4.0, Re = 1000, T = 120 ).

Animated figure.

Fig. 3.  Mode formation processes of the normal
two-cell mode ( ?  = 4.0, Re = 1000, T = 240 ).

Animated figure.
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Figure 3 indicates the mode formation processes of the normal two-cell mode at ?  = 4.0, Re =
1000 and T = 240, which are the same conditions as the ones in the Fig. 1 except that T is doubled.
The final mode is the normal two-cell mode, which is same as Fig. 1, but the formation process is
different.  In Fig. 3, the flow field has the normal six-cell mode, and begin to oscillate.  Then the
second vortex from the top and the second vortex from the bottom weaken, and they finally
disappear.  The cells adjacent to the disappearing cells rotate in the same direction.  So, they can
not be stable when their boundaries are attached.  Therefore, the cells adjacent to the disappearing
cells finally disappear.  Finally, the flow field becomes the normal two-cell mode.  Because the
flow field has same mode as the one in Fig. 1 and 3, the mean kinetic energy E is the same in these
cases.  Non-uniqueness means that the flow field has different modes at same ?  and Re.  Now we
find new non-uniqueness of the Taylor vortex flow that the mode formation processes are different,
even though the flow field has the same final mode.  We also confirm non-uniqueness in the mode
formation processes of the normal four-cell mode ( T = 6 and 300 ) and the anomalous four-cell
mode ( T = 3 and 60 ).

In the mode formation processes of the normal two-cell mode shown in Fig. 1 and 3, the
vortices develop from the inner upper and the inner lower corners of the cylinders.  We also
observed that the vortices developing from the mid-plane in the axial direction grow earlier than
the vortices from the inner upper and the inner lower corners.  In Table 1, the figures between
parentheses in the middle column show the mode formation process types.  The same figure shows
that the flow field grows in the same formation processes.

4  CONCLUSIONS

The Taylor vortex flow between two concentric rotating cylinders with finite length has been
investigated using the numerical flow visualization, and following results are obtained.
1. The non-uniqueness of the Taylor vortex flow is found numerically in the case that the
acceleration rate of the inner cylinder speed is varied.
2. The mode formation processes may be different even though the flow fields have the constant
mode at constant ?  and Re.
3. Besides the vortices developing from the inner upper and the inner lower corners, the vortices
developing around the mid-plane in the axial direction are observed.
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