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ABSTRACT

As a paradigm of non-linear systems, we numerically study and visualize the Taylor vortex flow between two
concentric rotating cylinders with finite length.  The governing equations are the unsteady Navier-Stokes
equations.  The outer cylinder wall and the upper and lower end walls of the cylinders are stationary, and the
inner cylinder begins to rotate with a constant accelerations.  The main parameters that determine the modes
of the Taylor vortex flow are the aspect ratio and the Reynolds number.  The former is defined by the ratio of
the cylinder length to the gap between cylinders, and the rotation velocity of the representative velocity that
is the inner cylinder determines the latter.  We have found that, even when the aspect ratio and the Reynolds
number are fixed, the final modes of flows depend on the acceleration rate of the inner cylinder.  Though the
same mode appears under the fixed aspect ratio and the Reynolds number, the developing processes may be
different.  This indicates that the acceleration rate of the inner cylinder significantly influences the final
mode of flows between cylinders.

1  INTRODUCTION

After Benjamin’s [1] study, the Taylor vortex flow between two concentric rotating cylinders with
finite length has been investigated from various viewpoints.  The aspect ratio ?  and the Reynolds
number Re are considered as the main parameters that determine the modes of the Taylor vortex
flow [2][3][4].  The aspect ratio ?  is defined as the ratio of the cylinder length to the gap between
cylinders, and the Reynolds number Re is based on the rotation speed of the inner cylinder.  Alziary
de Roquefort and Grillaud [5] analyzed numerically the Taylor vortex flow by using steady
axisymmetric Navier-Stokes equations formulated by the finite difference method.  Lücke et al.
[6][7] used the unsteady equations, and they reported that Ekman vortices that develop on
the stationary end walls cause the bulk Taylor vortex flow when the inner cylinder started to rotate
suddenly from rest.  Kuo and Ball [8] took the effect of the buoyancy into account and conducted
the three dimensional numerical simulation.  They found the steady modes in the case that the
rotational speed of the inner cylinder was gradually increased from zero.  The Taylor vortex flow
has a normal mode and an anomalous mode.  When the end walls of the cylinders are fixed, the
normal mode has a normal cell that gives an inward flow in the region adjacent to the end wall. 
The anomalous mode has anomalous cell(s) on either or both end walls.  The anomalous cell gives
an outward flow near the end wall, which is opposite to the flow direction found in the normal
mode.  Bielek et al. [9] observed experimentally the mode formation processes of the Taylor
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vortices, and they have concluded that the anomalous three-cell mode never formed directly after
sudden start of the inner cylinder but originated from the decay of the anomalous four-cell mode or
the six-cell mode.

One major character of the Taylor vortex flow is its non-uniqueness.  The difference of the
inner cylinder acceleration rate causes various modes, though the aspect ratio and the Reynolds
number are fixed.  As mention above, a large number of researches have been carried out into the
Taylor vortex flow, but little is known about the non-uniqueness of the mode formation processes
of the Taylor vortex flow.  The effect of the acceleration rate of the inner cylinder on the mode
formation processes has not been reported in detail.  When the flow pattern changes, unsteady
variations of property values such as torque and kinetic energy arise.  The unsteady variation
carries the potential for the unexpected system destruction.  Therefore, the analysis and prediction
of the mode formation processes is important from the engineering viewpoint.  In this study, the
two-dimensional flow visualization numerically demonstrates the mode formation processes of the
Taylor vortex flow between two concentric rotating cylinders.  Under the condition that the aspect
ratio and the Reynolds number are fixed, the rotation velocity of the inner cylinder is increased
from zero at various acceleration rates.  The non-unique mode formation processes from the
sudden-start of the inner cylinder have also been investigated by us [10].

2  NUMERICAL METHOD

All physical parameters are made dimensionless by using the characteristic length that is the gap
between cylinders, the characteristic velocity that is the maximum circumferential rotation speed
attained during each calculation, and the characteristic time defined as the ratio of the characteristic
length to the characteristic velocity.  The governing equations are the unsteady axisymmetric
Navier-Stokes equations and the equation of continuity, which are expressed in the cylindrical
coordinates (r, ? , z),
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where u is velocity vector with components (u, v, w) in each direction, p is pressure and t is time.
Staggered grid is used in this calculation.  The number of grid points in the radial direction is 41,
and the number of grid points in the axial direction is determined by the proportionality to the
cylinder length with 42 points for an aspect ratio of unity.  The number of grid points is estimated
large enough not to influence results, and the time interval fills the CFL condition.  The basic
solution procedure is the MAC method, and the time integration is the Euler explicit method.  The
spatial differentiation is the QUICK method for convection terms and the second-order central
difference method for other terms.  The inner cylinder is accelerated linearly from zero during the
non-dimensional accelerating time T.  The initial conditions are that all velocity components are
zero in the entire domain.  The outer cylinder side, the upper end wall and lower end wall are
stationary.  The boundary conditions at the cylinder walls and both end walls are no-slip conditions
for velocity components, and Neumann conditions for pressure that are obtained from momentum
equations.  The Stokes stream function ψ is determined as follows, which is used for visualization
of the calculated results.
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To analyze the property of the Taylor vortex flow, we adopt the mean kinetic energy E and the
mean enstrophy ?  which are defined by
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where S is an integral domain and A is the area of a meridional section.  We run the calculations
1210 times at ?  from 2.6 to 4.6, Re from 100 to 1000 and 10 different Ts.

3  RESULTS

3.1 Mode formation process at ?  = 4.0 and Re = 700

Table 1 shows the final modes of the Taylor vortex flow at ?  = 4.0 and Re = 700 in the case that
the inner cylinder is accelerated linearly from zero during T.  Each column of the table indicates the
non-dimensional acceleration time T, flow mode, the mean kinetic energy E and the mean
enstrophy ? .  Depending on the acceleration time of the inner cylinder, three different modes

T 0.0 8.4 16.8 25.2 33.6 42.0 50.4 58.8 67.2 75.6 84.0
Mode A4 N2 N2 A4 A4 N4 N4 N2 N4 N4 N4

E 0.07242 0.08427 0.08427 0.07242 0.07242 0.07496 0.07496 0.08427 0.07496 0.07496 0.07496
Ω 0.35060 0.36180 0.36180 0.35060 0.35060 0.42560 0.42560 0.36180 0.42560 0.42560 0.42560

Table 1.  Final modes of the Taylor vortex flow  ( ? ?= 4.0,  Re = 700 ).

                    

　 (a) T = 0.0 (A4)      (b) T = 8.4 (N2)     (c) T = 25.2 (A4)    (d) T  = 42.0 (N４)   (e) T  = 58.8 (N2)    (f) T = 84.0 (N4)

Fig. 1.  Mode formation processes  ( ?  = 4.0,  Re = 700 ).
         Double click each figure, and see animation.

 Mode  Process  Mode  Process  Mode  Process
 (b) N2 (T = 8.4)  N6 →N2  (a) A4 (T = 0.0)  N6 →A4  (d) N4 (T = 42.0)  N10→N6→N4
 (e) N2 (T = 58.8)  N10→N2  (c) A4 (T = 25.2)  N10→A8→A4  (f) N4 (T = 84.0)  N6 →N4

Table 2.  The modes formation process of the Taylor vortex flow  ( ? ?= 4.0,  Re = 700 ).
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appear: the anomalous four-cell mode (A4), the normal two-cell mode (N2) and the normal four-
cell mode  (N4).  At the same final mode, the energy E and the enstrophy ?  are the same.  Table 1
shows that the various modes appear even when ?  and Re are fixed.  This has been known as the
non-uniqueness of the Taylor vortex flow [1].

Figure 1 illustrates the time variations of ψ counters in the (r, z) plane to shows the mode
formation processes of the Taylor vortex flow at some Ts.  In the figure, the rotating inner cylinder
is on the left and the stationary outer cylinder is on the right.  The warm color area shows a vortex
rotating in a clockwise direction, and a vortex rotating in a counter-clockwise direction is shown
cold color area.  Figure 1 (a) is the AVI animation that shows the mode formation process of the
anomalous four-cell mode.  First, two vortices are generated around the mid-plane in the axial
direction and they develop in the radial direction.  On the other hand, another vortices are formed at
the inner-lower and the inner-upper corners.  After a while, the flow field becomes the normal six-
cell mode.  Then, the vortex on the cylinder end wall is pushed aside by the second vortex from the
cylinder end wall, and the end-wall cell is divided into two cells: one on the inner cylinder and the
other on the outer cylinder.  Finally, the boundaries of the interior vortices reach to the cylinder end
wall, and the flow field becomes the stable anomalous four-cell mode.

Figure 1 (b) indicates the mode formation process of the normal two-cell mode.  The vortices
are generated around the mid-plane, and at the inner-lower and the inner-upper corners.  Then, the
flow field becomes the normal six-cell mode.  After a while , the flow field begins to oscillate and it
becomes the stable normal two-cell mode after a breakdown of four vortices around the mid-plane.

Figure 1 (c) shows the mode formation process of the anomalous four-cell mode.  The vortices
are generated around the mid-plane, at the inner-lower and the inner-upper corners, and the
transient mode with eight cells is established.  Finally, the four vortices around the mid-plane
disappear and the flow becomes the stable anomalous four-cell mode.

Figure 1 (d) shows the mode formation process of the normal four-cell mode.  The vortices are
generated at the inner-lower and the inner-upper corners.  First, the normal ten-cell mode is formed.
Then, the second vortices from the end walls weaken and disappear.  The vortices adjacent to the
disappearing vortices rotate in the same direction, and they merge into one vortex.  Next, the flow
field becomes the normal six-cell mode, and the second vortex and the third vortex from the lower
cylinder end wall weaken and disappear.  The final mode is the normal four-cell mode. 

Figure 1 (e) illustrates the mode formation process of the normal two-cell mode.  The vortices
are generated around the mid-plane, and at the inner-lower and the inner-upper corners, and the
normal ten-cell mode appears.  Then, the eight vortices in the interior region disappear, and the
flow field becomes the normal two-cell mode. 

Figure 1 (f) shows the mode formation process of the normal four-cell mode.  The first
vortices appear at the inner-lower and the inner-upper corners, and the normal six-cell mode is
formed. Then, the flow field begins to oscillate.  After a breakdown of the second and third vortices
from the lower cylinder end wall, the flow field becomes the stable normal four-cell mode.  Table 2
summarizes the mode formation processes shown in Fig. 1.

To determine the number of vortices quantitatively, we use the time variation of the wave
number components of the power spectrum of ψ integrated in the radial direction, which is
determined by
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where D is the gap length between cylinders and L is the cylinder length.  When the component at
wave number k is dominant, the flow field has 2k  vortices.  The time variations of Sk are shown in
Fig. 2.

Figure 2 (a) indicates the variation in the mode formation process of the anomalous four-cell
mode.  The dominant wave number shifts from 2 via 3 to 2, and the flow mode is established about
t = 40.  From this point, we can conclude quantitatively that the final flow field has four vortices. 
The power spectrum helps us to count the number of vortices, and we can investigate the mode
formation processes in more detail. 
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Figure 2 (b) shows the time variation of Sk in the mode formation process of the normal two-cell
mode.  The final dominant wave number is one, and the final flow field has two vortices.  Figure 2
(c), (d), (e) and (f) show the variation in the formation processes of the anomalous four-cell mode,
the normal four-cell mode, the normal two-cell mode and the normal four-cell mode, respectively. 
The final mode has four, four, two and four vortices, respectively.
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                                     (e) T = 58.8 (N2)                                                                 (f) T  = 84.0 (N4)

Fig. 2.  Time variations of Sk  (  ?  = 4.0,  Re = 700 ).
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3.2 Mode formation process at ?  = 4.8 and Re = 1000

Table 3 presents the mode formation processes at ?  = 4.8 and Re = 1000.  Depending on the
acceleration rate of the inner cylinder, the flow has five different modes: the anomalous five-cell
mode (A5), the anomalous four-cell mode (A4), the anomalous six-cell mode (A6), the normal six-
cell mode (N6) and the normal four-cell mode (N4).  At ?  = 4.8 and Re = 1000, the non-uniqueness
of the Taylor vortex flow is found, as is seen at ?   = 4.0 and Re = 700.  The normal six-cell modes
are not stable, and their kinetic energy and mean enstrophy change with time.  Figure 3 and 4 show
the mode formation processes and the time variation of Sk, respectively.

Figure 3 (a) indicates the formation process of the anomalous five-cell mode.  First, two
vortices develop around the mid-plane, and the flow has the normal ten-cell mode.  Next, the
vortices attached to the end wall weaken and disappear, and the flow field has the anomalous eight-
cell mode.  Finally, the anomalous five-cell mode is formed.  The time variations of the number of
vortices are clearly found in Fig. 4 (a).

T 0.0 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0
Mode A5 A4 A6 N6 A4 N6 N6 N6 N4 N4 N6

E 0.07260 0.07058 0.07815 0.07183 0.07058 0.07190 0.07181 0.07182 0.07527 0.07527 0.07195
Ω 0.4961 0.4202 0.4784 0.5241 0.4202 0.5287 0.5240 0.5241 0.5077 0.5077 0.5270

Table 3.  Final modes of the Taylor vortex flow ( ? ?= 4.8,  Re = 1000 ).

               

     (a) T = 0.0 (A5)    (b) T  = 12.0 (A4)   (c) T = 24.0 (A6)   (d) T = 36.0 (N6)   (e) T = 48.0 (A4)   (f) T = 96.0 (N4)
　　

Fig. 3.  Mode formation process  ( ?  = 4.8,  Re = 1000 ).
       Double click each figure, and see animation.

 Mode  Process  Mode  Process  Mode  Process
 (b) A4 (T = 12.0)  N10→A8→A4  (a) A5 (T = 0.0)  N10→A8→A5  (d) N6 (T = 36.0)  N10→N6
 (e) A4 (T = 48.0)  N6→A4  (c) A6 (T = 24.0)  A8→A6  (f) N4 (T = 96.0)  N10→N4

Table 4.  The modes formation process of the Taylor vortex flow  ( ? ?= 4.8,  Re = 1000 ).
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The formation processes shown in Fig. 3 are summarized in Table 4.  In the formation processes of
the anomalous mode, the second vortex divides the normal cell attaching to the cylinder end wall
into the inner and the outer regions.  The second vortices reach the cylinder end wall, and the flow
field becomes the anomalous mode.
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Fig. 4.  Time variation of Sk    (  ?  = 4.8,  Re  = 1000 ).

S
k

S
k

S
k

S
k

S
k

S
k



H. FURUKAWA,  T. WATANABE  and  I. NAKAMURA

９４-89th International Symposium on Flow Visualization, Heriot-Watt University, Edinburgh, 2000
Editors G M Carlomagno and I Grant.

                                                                    

 (a) ?  = 4.8, Re = 300, T = 28.8 (N6)      (b) ?  = 2.6, Re = 900, T  = 10.8 (A3)            (c) ?  = 2.6, Re = 900, T = 43.2 (A2)

Fig. 5  Mode formation process.  Double click each figure, and see animation.
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  (c) ?  = 2.6, Re  = 900, T = 43.2 (A2)

Fig. 6  Time variation of Sk.
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3.3  Mode formation process of N6, A3 and A2

Figure 5 and 6 show the flow developments and the time variation of Sk in the formation processes
of the normal six-cell mode, the anomalous three-cell mode and the anomalous two-cell mode. 
Figure 5 (a) indicates the formation process of the normal six-cell mode.  First, the two vortices
develop at the inner-lower and the inner-upper corners, and the flow field has six vortices.  The six
vortices grow gradually, and the developed normal six-cell mode is formed.  The time variation of
Sk shown in Fig. 6 (a) indicates that the dominant wave number is 3 from the beginning of the mode
formation process, and no mode change occurs. 

Figure 5 (b) shows the formation process of the anomalous three-cell mode.  In the first place,
the vortices are generated around the mid-plane, and at the inner-lower and the inner-upper corners,
and the flow field becomes the normal six-cell mode.  Then, the flow field changes from the
normal six-cell mode, via the anomalous four-cell mode, to the anomalous three-cell mode. 
Figure 5 (c) presents the formation process of the anomalous two-cell mode.  The flow field shifts
from the six-cell mode, via the anomalous four-cell mode , to the anomalous two-cell mode.

4  DISCUSSION

At the beginning of the mode formation processes, there are two cases of the development of the
vortices.  In one case, the vortices develop around the mid-plane.  In the other case, the vortices
develop at the inner-lower and the inner-upper corners.  In general, the vortices develop around the
mid-plane at lower acceleration rate of the inner cylinder, and the vortices develop at the cylinder
corners when the acceleration rate is larger.

In the mode formation processes described in Section 3.1, the normal two-cell mode is
generated in two ways.  In one way, the flow field changes from the normal six-cell mode to the
normal two-cell mode (Fig. 1 (b)).  In the other way, the flow field changes from the normal ten-
cell mode to the normal two-cell mode (Fig. 1 (e)).  Similarly, the anomalous four-cell mode (Fig.
1 (a) and (c)) and the normal four-cell mode (Fig. 1 (d) and (f)) have two different mode formation
processes, respectively.  Non-uniqueness of the Taylor vortex flow has been used to mean that the
flow field has different modes at constant ?  and Re.  Now we find a new non-uniqueness of the
Taylor vortex flow, which means that the mode formation processes are different even though the
flow field has the same final mode.  We can also find a new non-uniqueness in the formation
processes mentioned in Section 3.2 (Fig. 3 (b) and (e).

Bielek et al. [9] experimentally concluded that the anomalous three-cell mode never formed
directly after sudden start of the inner cylinder, but the mode originated from the decay of the
anomalous four-cell mode or from the six-cell mode.  In this study, the anomalous three-cell mode
appears at Γ= 2.6, Re= 900 and T= 10.8.  In this case, the flow mode shifts from the normal six-
cell mode, to the anomalous four-cell mode, then to the anomalous three-cell mode.  The result in
this study agrees with Bielek et al.’s experimental observation. 

At the fixed ?  and Re, the order of the values of the mean enstrophy is listed as A2 < A3, A4
< A6 < N2 < N4 < N6.  In general, the mean enstrophy of the normal mode is larger than that of the
anomalous mode, and the larger number of vortices the flow field has, the larger the mean
enstrophy is.  However, some exceptions are found, for example, the enstrophy of the normal two-
cell mode (N2) is less than that of the anomalous three-cell mode (A3).  Therefore the relation of
the mean enstrophy between modes is not concluded clearly.  The relation of the mean kinetic
energy between modes is not determined, neither.

5  CONCLUSIONS
The Taylor vortex flow between two concentric rotating cylinders with finite length has been
investigated using the numerical flow visualization.  The non-uniqueness of the Taylor vortex flow,
which has been found in previous studies, is confirmed in the present study.  Though the same final
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mode at constant ?  and Re is formed, we found that the mode formation processes may be depend
on the acceleration rates of the inner cylinder.  That is, another modes may be taken during the flow
development.  At the same final mode, the mean kinetic energy is identical, and so is the mean
enstrophy.  The time variation of the power spectrums of the ψ integrated in the radial direction
help us to determine the number of vortices quantitatively.  The first vortices appear around the
mid-plane as well as at the inner-lower and the inner-upper corners at the beginning of the mode
formation, and the location depends on the acceleration rate of the inner cylinder.  In the mode
formation processes of the anomalous mode, the second vortex from the end wall divides the
normal cell on the end wall into the inner and the outer regions of the annulus.  Then, the second
vortex reaches the cylinder end wall, and the anomalous mode is formed.

6  REFERENCES

[1] Benjamin T. B.: Bifurcation phenomena in steady flows in a viscous flow - II. Experiment-. Proceedings of the
Royal Society of London, Series A, Vol. 359, pp. 27-43, 1979.

[2] Cliffe K.A.: Numerical calculation of two-cell and single cell Taylor flow. Journal of Fluid Mechanics , Vol. 135, pp.
219-233, 1983.

[3] Cliffe K. A.: Numerical calculation of the primary flow exchange process in the Taylor problem. Journal of Fluid
Mechanics, Vol. 197, pp. 57-79, 1988.

[4] Bolstad J. H. and Keller H. B.: Computation of anomalous modes in the Taylor experiment. Journal of
computational Physics, Vol. 69, pp. 230-251, 1987.

[5] Alziary de Roquefort, T. and Grillaud, G.: Computation of Taylor vortex flow by a transient implicit method.
Computers and Fluids, Vol. 6, pp. 259-269, 1978.

[6] Lücke M., Mihelicic M. and Wingerath, K.:  Flow in a small annulus between concentric cylinders. Journal of Fluid
Mechanics. 140, pp. 343-353, 1984.

[7] Lücke M., Mihelcic M. and Wingerath, K.: Front propagation and pattern formation of Taylor vortices growing into
unstable circular couette flow. Physical Review, A, Vol. 31, No. 1, pp. 396-409, 1985.

[8] Kuo D.C. and Ball K.S.:  Taylor-Couette flow with buoyancy: onset of spiral flow. Physics of Fluids, Vol. 9, No. 10,
pp. 2872-2884, 1997.

[9] Bielek C.A. and Koschmieder E.L.: Taylor vortices in short fluid columns with large radius ratio. Physics of Fluids,
A 2-9, pp. 1557-1563, 1990.

[10] Watanabe T., Furukawa H., Aoki M. and Nakamura I.: Visualization of sudden-start flow between two concentric
rotating cylinders. Proc. 9th Int. Symp. Flow Visualization (this volume).


