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A formal system standing alone is an incomplete entity: it needs its
interpretation.

Dana Scott, “Rules and derived rules.”
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Background:

Greg Restall’s coformulas.

A gap between logic and computation.

Our aim:

To consider what kind of proof theory is suitable for coformulas by
taking into account what coformulas are and should be in an intuitive
sense, and in what context they are useful.
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Stream

There are three viewpoints from which we can study streams:

set-theoretic (static)

computational (dynamic)

category-theoretic (both)
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Stream: from the set-theoretic point of view

.
Definition
..

.

. ..

.

.

Given a set A, Stream(A) = Aω (=
∏

n∈ω A = (ω → A)).

Note that

Stream(A) = A × Stream(A) = A × (A × Stream(A)) = . . .

i.e., Stream(A) satisfies the following equation:

Stream(A) = A × Stream(A)
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Stream: from the computational point of view

.
Definition
..

.

. ..

.

.

A stream s on the data type A is a machine M = (Q, q0, δ) where:

Q is a set of the states of the machine,

q0 ∈ Q is the initial state, and

δ : Q → A × Q is a function from a state q to a pair (a, q′) of an
atomic data a and a state q′.

δ(q) = 〈a, q′〉 means that a is the output of M in the state q, while q′ is
the state immediately after q. Call them head and tail respectively.
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Examples

Name Definition Output

ones (1.ones) 1, 1, 1, 1, 1, 1, . . .
nats (0.(s+ ones nats)) 0, 1, 2, 3, 4, 5, . . .
facts (1.(s* (tail nats) facts)) 1, 1, 2, 6, 24, 120, . . .
Fibs (1.1.(s+ Fibs (tail Fibs))) 1, 1, 2, 3, 5, 8, . . .

where s+ and s* stand for the stream operations of adding and
multiplying componentwise respectively.
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Stream: from the category-theoretic point of view

.
Definition
..

.

. ..

.

.

Stream(A) is a final FA-coalgebra, i.e., a terminal object in the category
FA-CoAlg, where FA : Set → Set is a functor defined by:

FAX = A × X , FAf = 〈1A, f 〉

and FA-CoAlg consists of:

Objects: functions f : X → FAX in Set.

Arrows: α : f → g is a function from dom(f ) to dom(g) such that
g ◦ α = FAα ◦ f .
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Specifically, Stream(A) = 〈head, tail〉 : Aω → A × Aω.

Many operations on Stream(A) can be defined as a mediating arrow to
this terminal object. E. g.:

ones: Stream(ω)

ω × ωω ω × 1
〈idω ,[[〈1,!〉]]〉oo

ωω

〈head,tail〉

OO

1
[[〈1,!〉]]

oo

〈1,!〉

OO
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interleave: Stream(A) × Stream(A) → Stream(A)

A × Aω A × (Aω × Aω)
〈idA,[[φ]]〉oo

Aω

〈head,tail〉

OO

Aω × Aω
[[φ]]

oo

φ

OO

where φ = 〈head ◦ fst, 〈snd, tail ◦ fst〉〉.
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Coformulas (cf. Restall, forthcoming)

For simplicity we think only of binary connectives.
.
Definition
..

.

. ..

.

.

Let Σ be a set of binary connectives. A coformula on Σ is a machine
M = (Q, q0, δ) where:

Q is a set of the states,

q0 is the initial state,

δ : Q → Σ × Q × Q is a function from a state q to a triple (σ, q′, q′′)
of a connective σ ∈ Σ and two next states q′ and q′′.

M is called finite if Q is. We call σ the head of this coformula, and q′, q′′

the tails.
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Set-theoretically, a coformula is an infinite binary trees with each node
labelled with a connective in Σ.

Category-theoretically, coformulas are a terminal object FΣ-CoAlg, where
FΣ : Set → Set is defined by:

FΣX = Σ × X × X , FΣf = 〈idΣ, f , f 〉

Specifically it is 〈head, tail0, tail1〉 : TΣ → Σ × TΣ × TΣ, where TΣ is the
set of infinite binary trees with labels Σ.

Minao Kukita (Kyoto U.) How to prove a coformula Logic Seminar Series 15 / 51



Examples

Let → and ∧ be binary connectives. Then followings are coformulas:

Q = {?}, q0 = ?, δ(?) = 〈→, ?, ?〉.
Q = {], \}, q0 = ], δ(]) = 〈→, \, \〉, δ(\) = 〈∧, ], ]〉.
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.
Definition
..

.

. ..

.

.

R ⊆ TΣ × TΣ is called bisimulation relation on TΣ if for all
M,M′ ∈ TΣ,

MRM′ ⇒


head(M) = head(M′)
tail0(M)Rtail0(M′)
tail1(M)Rtail1(M′)

Coformulas M and M′ ∈ TΣ are said to be bisimilar, written M 'B M′

if, head(M) = head(M′) and for some bisimilation relation R, MRM′.

Two bisimilar coformulas are observationally equal, i.e., we cannot
distinguish one from the other by observing their behaviors.

Minao Kukita (Kyoto U.) How to prove a coformula Logic Seminar Series 17 / 51



The formula-coformula pair is one of many dual notions of the same kind:

Algebra ⇐⇒ Coalgebra
Recursion ⇐⇒ Corecursion

List ⇐⇒ Stream
Formula ⇐⇒ Coformula

So to think of coformulas seems a natural step.

But the following questions also seem as natural:

What, if any, can they stand for?

Is there any context in which they are useful?
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—Yes.

Some of them can be thought of as recursive types,

They can fill a gap between logic and computation.
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Curry-Howard isomorphisms

Logic Typed λ calculus

Propositional logic ⇐⇒ Simply typed λ calculus
1st-order logic ⇐⇒ Dependant type theory

2nd-order prop. logic ⇐⇒ Polymorphic type theory
etc.

Proposition ⇐⇒ Type
→-I (∀-I) ⇐⇒ Abstraction
→-E (∀-E) ⇐⇒ Function application

Proof ⇐⇒ Term
Normalization ⇐⇒ Reduction

etc.
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Difference between logic and computation

Hence the cliché:

“To construct a proof is to write a program.”

But not vice versa:

“To write a program is NOT to construct a proof.”

Cf. Nordström et al. Programming in Martin-Löf Type Theory:
“In type theory it is also possible to write specifications of programming
tasks as well as to develop provably correct programs. Type theory is
therefore more than a programming languages, and it should not be
compared with programming languages, but with formalized
programming logics such as LCF and PL/CV.” (my emphases)
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λω λC

λ2

yyyyyyyy
λP2
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λ→
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wwwwwwww

The λ cube: they are all strongly normalising,
therefore not Turing complete.
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On the other hand, most practical programming languages do not have the
SN property.

An example of non-terminating program:

while (now.isToday()) {

System.out.print( );

}

We need such constructions particularly in order to allow recursive
definitions.
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Consider how the following definition works:

f (n) =

{
1 if n = 0
n ∗ f (n − 1) otherwise

What we do here is to compute the least fixed point of the functional
Φ : (N ⇁ N) → (N ⇁ N) such that:

Φ(f )(n) =

{
1 if n = 0
n ∗ f (n − 1) otherwise

where N ⇁ N is the set of partial functions on natural numbers.

But how do we find the least fixed point of such functionals?
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Curry’s fixed-point combinator
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.
Definition
..

.

. ..

.

.

x ∈ A is called a fixed point of f : A → A if f (x) = x .
F : (A → A) → A is called a fixed-point operator if for all f : A → A,
f (F (f )) = F (f ).

Let Y be λy .(λx .y(xx))(λx .y(xx)). Then for any term M,

YM →β M((λx .M(xx))(λx .M(xx)))

→β M(M((λx .M(xx))(λx .M(xx))))

M(YM) →β M(M((λx .M(xx))(λx .M(xx))))

∴ M(YM) =β YM.
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Definition of factorial using a fixed-point operator:

(define Y
(lambda (f)

((lambda (x) (f (x x))) (lambda (x) (f (x x))))))

(define (F f)
(lambda (n)

(if (= n 0) 1
(* n (f (- n 1)))))))

((Y F) 5)

>> 120
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Note the following facts:
.
Fact
..

.

. ..

.

.

Y has no βnf , therefore 6`λ? Y : σ, for any pure type system λ?
enjoying the SN property.

λ→ with Y (or any other mechanism for finding the least fixed point
of an arbitrary term) is Turing complete.

So such a mechanism is the major factor that divides logics (typed λ
calculi) and programming languages.
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Reflexive domain

.
Definition
..

.

. ..

.

.

A type D with terms φD : D → (D → D) and ψD : (D → D) → D is
called a reflexive domain if

φD ◦ ψD = ID→D

where ID→D : (D → D) → (D → D) is the identity function on (D → D).

Rules for reflexive domains:

M : D → D

ψDM : D
fold

M : D

φDM : D → D
unfold

M : D → D

φD(ψDM) = M : D → D
reflexive identity
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Y 
ombinator
y : D ! D x : D unfold�x : D ! D x : D�xx : Dy(�xx) : D�xD :y(�xx) : D ! D y : D ! D x : D unfold�x : D ! D x : D�xx : Dy(�xx) : D�xD :y(�xx) : D ! D fold (�xD :y(�xx)) : D(�xD :y(�xx))( (�xD :y(�xx))) : D�yD!D :(�xD :y(�xx))( (�xD :y(�xx))) : (D ! D)! D

1
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A reflexive domain D → D can be defined by means of more general
notion of recursive types.

Recursive types are type expressions of the form

rect.τ

where τ is a type expression and t is a type variable.

Roughly, rect.τ is a type which satisties the equation:

rect.τ = τ [rect.τ/t]

Therefore, a reflexive domain D → D is defined as rect.t → t.
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Type expressions

.
Definition
..

.

. ..

.

.

Let TVar be a set of type variables (ranged over by t). The set TExp of
type expressions (ranged over by τ) is defined by the following grammer:

τ ::= t | τστ | rect.τ

where σ ∈ Σ.

A type expression is called coformulaic if it is closed and does not contain
subexpressions of the form rect.t ′ (whether t = t ′ or not). We denote the
set of coformulaic expressions by TExp0.
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We define a function F : Tfin
Σ → TExp0 that transforms any finite

coformula into coformulaic expression as follows:

Given a finite coformula M = 〈Q, q0, δ〉, we can construct a corresponding
TExp0 as follows: Let Q = {qk : 0 ≤ k ≤ n}. Let

Sk = ti(k,0)σkti(k,1)

where δ(qk) = 〈σk , qi(k,0), qi(k,1)〉 and ti(k,0)’s are distinct type variables
for 0 ≤ k ≤ n.
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Define Ŝk(0 ≤ k ≤ n) inductively as follows:

Ŝn = rectn.Sn

Ŝk−1 = rectk−1.(Sk−1[Ŝn/tn] . . . [Ŝk/tk ])

Then let Ŝ0 be FM.
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For example, consider the following coformula M = 〈Q, q0, δ〉:

Q = {q0, q1, q3},
δ(q0) = 〈→, q1, q2〉,
δ(q1) = 〈∧, q2, q0〉,
δ(q2) = 〈∨, q0, q1〉.

Applying F to M, we get

rect0.(rect1.(rect2.(t0 ∨ t1)∧ t0) → rect2.(t0 ∨ rect1.(rect2.(t0 ∨ t1)∧ t0)))
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S2 = t0 ∨ t1

S1 = t2 ∧ t0

S0 = t1 → t2

Ŝ2 = rect2.(t0 ∨ t1)

S1[Ŝ2/t2] = rect2.(t0 ∨ t1) ∧ t0

S0[Ŝ2/t2] = t1 → rect2.(t0 ∨ t1)

Ŝ1 = rect1.(rect2.(t0 ∨ t1) ∧ t0)

S0[Ŝ2/t2][Ŝ1/t1] = rect1.(rect2.(t0 ∨ t1) ∧ t0) →
rect2.(t0 ∨ rect1.(rect2.(t0 ∨ t1) ∧ t0))

Ŝ0 = rect0.(rect1.(rect2.(t0 ∨ t1) ∧ t0) →
rect2.(t0 ∨ rect1.(rect2.(t0 ∨ t1) ∧ t0)))
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Remark: The order of Sk ’s may affect the result. For example, in the
construction of Ŝ0, if we start with S1 instead of S2, the result will be

rect0.(rect1.(rect2.(t0 ∨ rect1.(t2 ∧ t0))∧ t0) → rect2.(t0 ∨ rect1.(t2 ∧ t0)))

not

rect0.(rect1.(rect2.(t0 ∨ t1)∧ t0) → rect2.(t0 ∨ rect1.(rect2.(t0 ∨ t1)∧ t0)))

However, we can ignore the difference for the reason explained later.
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Conversely, we define a function G : TExp0 → Tfin
Σ that transforms a

coformulaic expression into a finite coformula.

Define ∗ : TExp0 → Σ × TExp0 × TExp0 by:

(τ0στ1)
∗ = 〈σ, τ0, τ1〉

(rect.τ)∗ = (τ [rect.τ/t])∗
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Then by the finality of TΣ there exists unique arrow [[∗]] : TExp0 → TΣ

such that the following diagram commutes:

Σ × TΣ × TΣ Σ × TExp0 × TExp0
〈idΣ,[[∗]],[[∗]]〉oo

TΣ

〈head,tail0,tail1〉

OO

TExp0
[[∗]]

oo

∗

OO

Call this [[∗]] G .
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.
Lemma
..

.

. ..

.

.

Let S0,S1, S2 be type expressions that consist of type variables t0, t1, t3
only and not containing rec. Let θ be (possibly empty) successive
substitutions each of which is of the form [recti .Siθ′/ti ]. Then
G (rect0.S0[rect1.S1θ1/t1][rect2.S2θ2/t2]) is bisimilar to
G (rect0.S0[rect1.S1θ′1/t1][rect2.S2θ′2/t2]).

Proof. By usual coinduction. ¤

This result justifies the remark above.
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.
Proposition
..

.

. ..

.

.

For each M ∈ Tfin
Σ , M is bisimilar to GF (M).

Proof. By usual coinduction, using the above lemma. ¤
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Based on above result, we propose that coformulas should be restricted to

Tfin
Σ .

This restriction has some advantage because

it gets rid of the coformulas that cannot be captured by any finitery
method,

it enables us to focus on coformulas that have relevance in relation to
computation and programming language,

we can avail ourselves of existent semantics and a proof system.
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Abramsky (1991b) formulates “logical interpretations” for the language of
domain theory.

This language contains usual type constructors in domain theory, including
→ (function spaces), × (products), ⊕ (coalesced sums), P (plotkin
powerdomains), rec (recursive domains), etc.

We can exploit this logic for coformulas.

Minao Kukita (Kyoto U.) How to prove a coformula Logic Seminar Series 46 / 51



Proof system

Let Σ = {→,∧} for simplicity.

We supply a natural deduction system with additional rules for each
coformula M = 〈Q, q0, δ〉 and q ∈ Q:

M : δ(q)

foldM
q (M) : q

rec-I
M : q

unfoldM
q (M) : δ(q)

rec-E

Here we abuse the notation δ(q) to denote q′σq′′, where δ(q) = 〈σ, q′, q′′〉.
We say M is proved if its initial state is proved.
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Q = {q0, q1, q2}
δ(q0) = q1 → q2, δ(q1) = q2 → q0, δ(q2) = q0 → q1,(x : q0) re
-Eunfoldq0(x) : q1 ! q2 (y : q1)unfoldq0(x)y : q2 re
-Eunfoldq2(unfoldq0(x)y) : q0 ! q1 (x : q0)unfoldq2(unfoldq0(x)y)x : q1 x�xq0 :(unfoldq2(unfoldq0(x)y)x) : q0 ! q1 re
-Ifoldq2(�xq0 :(unfoldq2(unfoldq0(x)y)x)) : q2 y�yq1 :(foldq2(�xq0 :(unfoldq2(unfoldq0(x)y)x))) : q1 ! q2 re
-Ifoldq0(�yq1 :(foldq2(�xq0 :(unfoldq2(unfoldq0(x)y)x)))) : q0

1
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Curry’s paradox

Q = {q0, q1}
δ(q0) = q0 ∧ q0, δ(q1) = q1 → q0

(x : q1) re
-Eunfoldq1(x) : q1 ! q0 (x : q1)unfoldq1(x)x : q0 x�xq1 :(unfoldq1(x)x) : q1 ! q0 (x : q1) re
-Eunfoldq1(x) : q1 ! q0 (x : q1)unfoldq1(x)x : q0 x�xq1 :(unfoldq1(x)x) : q1 ! q0 re
-Iunfoldq1(�xq1 :(unfoldq1(x)x)) : q1(�xq1 :(unfoldq1(x)x))(unfoldq1(�xq1 :(unfoldq1(x)x))) : q0

1
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Remarks

This system suggest that (finite) coformulas can be understood as
self-referential sentences.

One needs specification of coformulas outside proof. So this system
may not seem purely syntactical. However, as far as finite coformulas
are concerned, we can write down these specifications in a syntactic
fashion.

Some proofs has no normal form (as expected).

Minao Kukita (Kyoto U.) How to prove a coformula Logic Seminar Series 50 / 51



To sum up,

There is a substantial gap between logic and programming, despite
Curry-Howard isomorphism.

Coformulas are logical analogues to recursive types in programming
languages, and hence can fill the gap.

As such, they may well be restricted to finite ones.

Then a kind of type theory can be applied to coformulas.
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