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1 Introduction

Why are many mathematicians realists, while many philosophers are not? This question

becomes even more striking when one considers the fact that modern mathematics is

carried out totally in the axiomatic manner. The main aim of this article is to give an

answer to this question.

One reason lies in different conceptions of reality between philosophers and mathe-

maticians. For example, Abelson and Sussman wrote

[a computational process] cannot be seen or touched. It is not composed of

matter at all. However, it is very real. It can perform intellectual work. It can

answer questions. It can affect the world by disbursing money at a bank or by

controlling a robot arm in a factory. (Abelson and Sussman, [1], p.1)

They think that a computer process is real because it has certain effects and functions.

On the other hand, many philosophers seem to think that in order for something to be real,
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it must exist in space-time; it must be independent of our senses, perceptions, thoughts,

etc.; it must have causal effects, etc. Let us call the reality in the former sense functional,

and that in the latter substantial. When philosophers are discussing reality, it is often a

substantial one that is intended. However we certainly use the word “reality” in many

senses, and there is no reason to confine the word in any one of them, or to regard any one

of them as central or normal. It is clear that mathematical objects are not substantially

real. One may be led to think that the question about the reality of mathematics is only

concerned with how we define the word “reality,” and that mathematics is not substantially

real, but functionally real. However this is not the case. The question of reality has a

certain significance within mathematics.

Abelson and Sussman demarcate computation from mathematics, and do not extend

their view to mathematics in general. However, the development of intuitionistic math-

ematics over the past century has shown that a fairly large part of mathematics can be

viewed as computational. How far we can extend this view, i.e., to what extent mathe-

matics can be thought of as (functionally) real is an interesting question. Therefore reality

has it own significance apart from philosophical or metaphysical discussion.

A difference between computation and mathematics is that the former makes more of

processes, while the latter makes more of results. For example, in computation, a function

is viewed as a program that prescribes how to process one piece of data into another. In

mathematics, however, it is viewed as a set of ordered pairs of inputs and outputs, no

matter how the outputs are obtained. In other words, a function is reified and seen as a

substantial object in mathematics. This, I think, is a major source of the controversy over

realism in mathematics.

Most philosophical arguments against realism seem to be based, for one thing, on the

non-existence of mathematical objects such as numbers, sets, etc. and, for another, on

the irrelevance of the state of actual affairs to the truth and falsehood of a mathematical

sentence. Thus, many realist replies consist in claiming some other form of existence than

that of ordinary perceptible objects, and then associating with it the truth of a statement.
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Such realists look into the realm of the thoughts, forms etc. for mathematical objects to

which mathematical statements refer. In doing so, they are tacitly employing a form of

model-theoretic interpretation for mathematical statements.

This is understandable and even natural, because the model-theoretic interpretation

is so dominant in current logic that we are quite accustomed to interpreting formulas

or statements by means of models. However, this is not the only way of interpreting

mathematical language. One alternative is the operational interpretation, where the notion

of truth is redundant and hardly seems to demand that mathematical statement refer to

something outside mathematics. The meaning of an expression is fully determined by

the formal system, and the notion of truth is replaced by the notion of provability or

derivability. It might at first seem that realism is out of place when one is employing

this interpretation. I shall argue that some form of realism can still be maintained in the

alternative.

My conclusion is that objects of mathematics are procedures prescribed by mathemat-

ical terms, formulas and proofs, and they can be viewed as real by weaker criteria than

those of philosophers. I formulate the followings as criteria employed by mathematicians:

(1) identity, (2) manipulability and (3) force.

Therefore the notion of reality is different between mathematicians and philosophers.

A mathematician’s notion of reality has its own significance in mathematics, particularly

when one considers to what extent mathematics is real rather than whether mathematics

as a whole is real or not.

2 Mathematical truth

A typical argument against mathematical realism goes as follows:

1. Mathematical statements are about numbers, sets, etc.

2. Numbers, sets, etc. are abstract but not concrete; they do not exist in space-time;

they have no causal effect, etc.
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3. Therefore they are not real.

There are two assumptions behind this type of argument. One is that mathematical

statements are saying something about numbers, sets, etc. Another is that if something

is real, it must be concrete; it must exist in space-time; it must have causal effects, etc.

The first assumption has much to do with a model-theoretic conception of the mean-

ing, or model-theoretic interpretation (hereafter referred to as MTI). Roughly speaking,

MTI is a doctrine that each well-formed expression in a theory should be associated with

something that belongs to the intended model. Names and singular terms are associated

with individual objects, predicates with relations, and sentences with conditions. More

formally, a model-theoretic interpretation consists of a set of individual objects D, func-

tions I1 : Term → D, In
2 : Predn → Dn, where Term is the set of terms, and Predn is

the set of n-ary predicates.

Language Model

terms: a1, a2, . . . , an objects: I1(a1), I1(a2), . . . , I1(an)

n-ary predicate: P n-ary relation: In
2 (P )

sentence: P (a1, a2, . . . , an) condition: 〈I1(a1), I1(a2), . . . , I1(an)〉 ∈ In
2 (P )

A sentence “P (a1, a2, . . . , an)” is said to be true if and only if it is the case that

〈I1(a1), I1(a2), . . . , I1(an)〉 ∈ In
2 (P )

For example, consider the equation “A ∪ B = B ∪ A.” In MTI it is interpreted as

indicating the condition that the union of A and B is equal to the union of B

and A ( A and B are the sets denoted by “A” and “B” respectively).

4



Language Model

A ∪ B the union of A and B

B ∪ A the union of B and A

= equality

A ∪ B = B ∪ A the condition that the union of A and

B is equal to the union of B and A

Another way to describe the situation is by saying that the terms “A∪B” and “B∪A”

denote the same object.

“A ∪ B” “B ∪ A”
Z

Z
Z

ZZ~

½
½

½
½½=

denotes denotes

•

In MTI, it is necessary that there should be a set denoted by both “A ∪ B” and

“B ∪ A,” but independent of these expressions. Here one views sentences as declarative

or descriptive: they mention some objects, describe their conditions, and are true or false

depending on whether they are describing the state of these objects correctly or not.

Most arguments around realism in mathematics, whether for or against, implicitly

presuppose MTI. Antirealists claim that mathematics is not real because there are no

models for mathematical theories anywhere in the real world, while realists claim that the

model exists in the realm of forms, or in our thoughts, which are real in some sense. They

both take it for granted that in order to claim the reality of mathematics, we should seek

out real entities outside mathematics to which mathematical statements refer.

Is this really what happens in mathematics? Modern mathematics does not seem very

much to care about what lies outside of the mathematical language, particularly not about

what mathematical terms may mean. In fact, the axiomatic method is one of the most

remarkable features of modern mathematics. If one asserts that such-and-such is the case,

it implies only that there is a formal proof of it, and nothing more. Therefore, whatever
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a mathematical expression may refer to is entirely irrelevant for mathematics.1 If so, why

do many mathematicians claim the reality of mathematics?

Let me draw an analogy. Suppose someone says “Cars must keep to the left.” This

statement is true in such countries as the U. K., Australia and Japan, and false in many

other countries. Whether it is true or false depends on the traffic law of each country. So

the statement is not about a particular situation of things, but about the system of law.

The law itself is neither true nor false.

The law is a result of our language activity and therefore not independent of us. It

is not a physical entity that exists in space-time. Nor is it a psychological entity that

exists someone’s mind, since if it is so, it will be subjective, but the very nature of the law

requires it to be objective.

The same thing can be said about mathematics. Syntactical rules, definitions, axioms

and inference rules are neither true nor false. They are not descriptions of things, but

prescriptions for constructing terms, formulas and deductions. However, we can make

true statements about the formal system they determine.

It is important to distinguish formulas in an axiomatic system from statements about

it. For example, (xy)−1 = y−1x−1 is not a mathematical statement, but simply a formula.

“For every group G, (xy)−1 = y−1x−1 is deducible for any x, y ∈ G” is a mathematical

statement that is true. However, this distinction is only relative, and not a kind of distinc-

tion between object language and metalanguage. The latter statement is also within the

mathematical language, which is in turn an object of other mathematical statements such

as “It is provable that for every group G, (xy)−1 = y−1x−1 is deducible for any x, y ∈ G.”

In fact, there is no clear distinction between object language and metalanguage in

mathematics. A statement about mathematics is often a statement within mathematics.

In other words, the mathematical language provides mathematics with objects, and where

there is no language, there are no mathematical objects either.

1 It may help mathematicians to get some insight, though.
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Mathematical objects are products of linguistic activities. However, it does not follow

from this that mathematical objects are simply meaningless symbols. In the next chapter

we will consider the nature of mathematical objects.

Before proceeding to the next chapter, I should briefly mention semantics for formal

systems. Model-theoretic semantics is an almost mundane part of logic. However, it is not

really a theory of meanings, but a theory of translation from logic into mathematics,

in particular into set theory, algebra, topology or category theory. They are also formal

systems determined by their own axioms and inference rules. Moreover the means of

translation are also given in axiomatic manner. Therefore, model-theoretic semantics does

not establish semantic relation between language and things. This fact does not sully the

significance of finding a translation from a logic into a mathematical system or structure.

Such translation is not only an interesting — sometimes even amazing — mathematical

discovery in itself, but also may have epistemic values. For example, Kripke frames are

a useful tool in examining whether a formula is provable or not, and so is denotational

semantics in examining whether a program is correct or not.

3 Mathematical objects

It is obvious that mathematics does not deal with concrete objects. Nor does it with

empty symbols. Mathematical symbols do have meanings, but not in the way words of

ordinary language do. For example, a name such as “Caesar” or “Romans” may have

Caesar or the set of Romans as their meaning. Symbols in mathematics do not have such

concrete objects or even sets of objects as their meaning. They represent functions in the

symbol manipulating system, and their functions are determined by syntax, axioms and

inference rules.

Consider a simple example from group theory. A group is any quadraple 〈G, ·, ε,−1〉,

where G is a non-empty set, · is a binary operation on G, ε is an element of G (called unit),

and −1 is a unary operation on G satisfying the following conditions: for all x, y, z ∈ G,
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(A1) x · (y · z) = (x · y) · z,

(A2) x · ε = x = ε · x,

(A3) x · x−1 = ε = x−1 · x.

We write xy for x · y. Owing to (1), parentheses can be omitted.

It follows immediately from (1)-(3) that:

(F1) for all x, y ∈ G, (xy)−1 = y−1x−1.

(F2) for all x, y ∈ G, if xy = ε = yx, then x−1 = y and y−1 = x.

Now let G = 〈G, ·, ε,−1〉 be a group satisfying the following conditions.2

(GA1) a, b, c ∈ G where a, b and c are mutually distinct.

(GA2) for all x ∈ G, there are some z1, z2, . . . , zn ∈ {a, b, c}(n ≥ 0) such that

x = εz1z2 . . . zn.

(GA3) aa = bb = cc = ε.

(GA4) ab = bc = ca.

(GA5) ac = cb = ba.

Since we do not know what a, b and c stand for, we can see elements of G such as ab,

cabaa, etc. as mere strings of symbols (we call them terms), and the axioms as rules for

term rewriting.3 Let us see what can be said about this formal system.

It follows that:

2 G is an axiomatization of the groups of permutations on lists of three elements.

3 Cf. [5].
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(GF1) a = a−1, b = b−1, c = c−1.

(GF2) for all z1, z2, . . . , zn ∈ {a, b, c}(n ≥ 1), (z1z2 . . . zn)−1 = zn . . . z2z1.

(GF3) G = {a, b, c, ab, ac, ε}.

(GF3) may not seem so obvious but it is easy to prove by induction on the length of

terms.

For example, Let t be ab(bac)−1. Then,

t = ab(bac)−1 = abc−1(ba)−1 = abc−1a−1b−1 = abca−1b−1 = abcab−1 = abcab =

bccab = bab = cbb = c

So term t can be viewed as having the term c as its value. The terms which appear in the

course of the rewriting of t (including t itself) may also be values of t. Therefore we could

not speak of the value of t. Fortunately, however, in G, every term is equal to just one of

ε, a, b, c, ab and ac as stated in (GF3), and these are among the simplest of such sets of

terms. We will call these terms normal forms. If t = v and v is a normal form, v is called

the value of t. Also we will say that a term t reduces to t′ if t = t′ and t′ is not longer

than t.

The following conditions are equivalent for every t, t′ ∈ G:

(1) t = t′,

(2) t and t′ has the same value,

(3) t and t′ reduce to the same term.

For example abc = bcc = b, and cba = baa = b. So we can infer abc = cba.

abc cba
Z

Z
Z

ZZ~

½
½

½
½½=

reduces to reduces to

b

Thus a term of G has two aspects. One is the value, which determines equality between

terms. Another is the form (the configuration of symbols), which indicates how the term
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is constructed as well as how to calculate its value. The process in which we confirm the

equality of abc and cba is indicated in their composition, and if one knows the syntax,

axioms, and rules of G, one can construct a proof of the equality. These two aspects

resemble Frege’s Bedeutung and Sinn, but we have to be aware that t’s value is also a

term of G and not independent of G. The relation between a term and its value is not

semantic but proof-theoretic or computational. When we talk of the value of a term t, we

really talk of a procedure to deduce t = v (a proof or a construction of t = v) in G for

some v ∈ N .

Moreover, a term g ∈ G can also be viewed as a function, since for all x ∈ G, gx ∈ G.

Here we think of g as a procedure that is applied to arbitrary x ∈ G and produces the

value of gx. Among such functions, some are of interest. For example, define α := ab and

β := ac. Then α is a “one step backward” operator and β a “one step forward” operator,

i.e.,

α(a) = c α(b) = a α(c) = b

β(a) = b β(b) = c β(c) = a

It is obvious that αα = β, ββ = α, ααα = αβ = βββ = βα = ε, etc. These facts

are useful when we carry out calculation. For example, suppose we have to calculate on

acbcacbcababc. Recalling that ab = bc = ca and ac = cb = ba,

acbcacbcabcac = βαβαααc

= εεβc

= a

α and β are abstractions which result from neglecting the forms of terms and focusing

only on their effects on the atomic terms a, b and c next to them. This example shows

that each term has particular functions in particular contexts. Like combinators in lambda

calculus, they are names for procedures or programs described in G’s terms. And just as

programs are meaningful to its interpreter, so are terms of G to those who are working

at G. However, to those who are not familiar with G’s axioms or rules, it is no wonder
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these terms appear meaningless.

The example of G shows that even if each atom of language is devoid of meaning,

every term of a formal system is not empty. It has its own value as well as functions in

particular contexts. In order to know the value and the functions of a term we should

calculate it. The way of calculation is shown in its form, together with the syntax, axioms

and inference rules of the system. In short, a term expresses the procedures we have to

carry on. The same thing can be said about other mathematical objects such as formulas

or proofs.

It is such procedures that mathematics is really about. Mathematicians do not deal

with mere empty symbols, any more than chess players play with chess pieces. Chess

players are playing chess, and the essence of playing chess is to combine possible moves

into effective strategies. Similarly, mathematicians combine symbols according to rules

into significant terms, formulas and proofs. Once they have been constructed, they can

be used to carry on the construction further.

4 Criteria for reality

In this section, we will examine the second assumption of anti-realist arguments that in

order for something to be real, it must be concrete; it must exists in space-time; it must

have causal effects, etc. These are criteria for what I called substantial reality. It is obvious

that the objects of mathematics do not meet these criteria. However, mathematicians seem

to be adopting a weaker conception of reality which I called functional. For example, Georg

Cantor wrote

First, we may regard the integers as actual in so far as, on the basis of defi-

nitions, they occupy an entirely determinate place in our understanding, are

well distinguished from all other parts of our thought, and stand to them in

determinate relationships, and thus modify the substance of our mind in a

determinate way [...]. ([2], p. 895)
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[concept of mathematics] must both be consistent with each other and also

stand in exact relationships, ordered by definitions, to those concepts which

have previously been introduced and are already at hand and established.

[7] In particular, in the introduction of new numbers it is only obligated to

give definitions of them which will bestow such a determinacy and, in certain

circumstances, such a relationship to the older numbers that they can in any

given instance be precisely distinguished. As soon as a number satisfies all

these conditions it can and must be regarded in mathematics as existent and

real. ([2], p. 896)

Cantor’s criteria for reality include identity, relationships with other things, and effects

on other terms and on our activities.4. He then claims that they are existent and real

in our mind. This is probably because he also felt the need to find out the references of

mathematical expressions independent of mathematical language, i.e., he also presupposed

a sort of model-theoretic interpretation for mathematical language.

Once we have done away with the model-theoretic view, we no longer have to look for

the references of mathematical expressions. In addition, as we have already seen, identity

in a formal system is determined only by means of its syntax, axioms and rules. Whether

x = y holds or not depends only on whether there is a proof of it or not, which has nothing

to do with our state of mind.

I want to reformulate the criteria without referring to any psychological entity. I

include the followings in the list of what seems to be mathematicians’ criteria for reality:

(1) identity, (2) manipulability, and (3) force. I do not claim these to be a necessary

and sufficient set of conditions for reality. Nor do I claim a novelty for them. I only hope

that they are natural requirements that we expect every real object to fulfill. Let me

explain these in order.

4 Recall also the quotation from Abelson and Sussman [1] in the begining of the article.
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(1) Identity of something means its having clear enough characteristics to be qualified

as a member of some established category or classification, and to be identified with itself

and distinguished from any other object in the category.

For example, we cannot identify the smallest natural number that cannot be designated

by any English expression less than twenty words long. Therefore the number is not real.

On the other hand, we can identify the smallest natural number that can be designated

by some English expression less than twenty words long. It is, of course, zero.

In mathematics, the way to identify something is contained in its definition, and iden-

tity is to be proved formally. For example, to identify two functions f : A → B and

g : C → D, it is necessary to prove A = C, B = D, and for all x ∈ A, f(x) = g(x).

(2) Something is manipulable when we can manipulate it according to definite proce-

dures that yield certain (not necessarily deterministic) results when applied to any object

in the same category. Here I use the word “manipulate” in a broader sense. For ex-

ample, construction, application, calculation, detection, measurement etc. are kinds of

manipulation.5

One important form of manipulation here is making an assertion or judgement about

something. Judgement requires some justification for making it. The proposition that a

certain apple is sour needs no justification, while if you are to judge so, you need to eat

it, to test its acidity, or perhaps to observe someone eat it and frown. There are a great

variety of procedures that justify judgements, but in mathematics, there is only one kind:

proof.

Manipulability in my sense does not imply that we can do anything we like; on the

contrary, manipulations should be understood as quite restricted. The restriction may be

imposed either by physical conditions or by conventions. In either case, the stricter the

restriction is, the more real the result feels.

5 Examples of manipulation which add to reality are abundant in physics, chemistry or medical science.
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Axioms and rules of mathematics are among the strictest forms of restriction, because if

we break them we can no longer carry on mathematical studies. Therefore mathematics is

not a product of our imagination. It is this strictness of mathematics that made Bertrand

Russell write:

Arithmetic must be discovered in just the same sense in which Columbus dis-

covered the West Indies, and we no more create numbers than he created the

Indians. The number 2 is not purely mental, but is an entity which may be

though of. Whatever can be thought of has being, and its being is a precondi-

tion, not a result, of its being thought of. ([3], §472)

(3) Force is the disposition to invoke in something an action or a change of state, or

to prevent it from making an action or changing its state. Again this process need not be

deterministic or causal. A typical example of a force that may not be causal is imperative

force, i.e., that of (or due to) laws, rules, orders, contracts, appointment, etc. Like the

gravity of the earth or a dose of medicine, they have certain effects on us and can throw

us into or out of an action.

The intensity of the force that a law or a rule has may differ from person to person,

probably depending on one’s nature or on how one has been conditioned so far. This differ-

ence may account for the fact that many mathematicians are realistic about mathematical

objects, while many philosophers are not.

Another example is the force of plans, methods or strategies. For example, think of

chess strategies. If a player knows an effective strategy that can be applied to the present

situation, he will employ it. So chess strategies have a great effect on chess players.

Mathematical objects have this kind of force. Once we have constructed an object, it

facilitates further mathematical acivities. For example, if it had not been for a definition

of the primes, it would not have been proved that there are an infinite number of primes.
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When one employs these criteria, the reality in question is subjective and empirical.

It comes in differing degrees from person to person, and therefore different mathematical

objects have different degrees of reality. For example, the power set of {0, 1} is real for

every mathematician, while the power set of the set of all natural numbers is not. The

question about reality in mathematics is about to what extent mathematics is real, not

about whether mathematics as a whole is real or not.

The word “real” in ordinary language has a wide range of meanings. Philosophers and

mathematicians are talking about different meanings of the word. So philosophers do not

have to feel offended when mathematicians insist on the reality of mathematical objects,

and vice versa.

Some may be afraid that the criteria above are too weak and that almost everything

will be qualified as real. I do not insist on reality for every procedure. For example,

consider a chess strategy that begins with “Take the opponent’s queen at the opening

of the game, and then...” The most likely response will be “But how can I take the

opponent’s queen at the opening?”

It is meaningful to ask whether a procedure is feasible, realizable or effective. These

notions have something to do with the notion of reality as used by mathematicians. It is

useless to dispute whether mathematics as a whole is real or not, for, as we have seen, it

is a mere matter of definition of the word. A more significant question is to what extent

mathematics is real. For it is on this question that disagreement between mathematicians

arises. Few mathematicians are sheer anti-realists who do not admit the reality of natural

numbers, or full-blooded realists who admit the existence of the set of everything. Disputes

over reality in mathematics are about where to stop. Finitism, intuitionism or Platonism;

predicative or impredicative analysis; first-order, second-order or higher-order predicate

logic; ZF, ZFC or more; at which level of the arithmetical hierarchy; typed or untyped

lambda calculus; context-sensitive or phrase structure grammar; etc.
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5 Conclusion

Mathematical objects are essentially different from physical or everyday objects. There-

fore, when mathematicians say they are real, a different meaning of reality is intended.

Rather than blaming mathematicians for being careless in the use of the word, it is useful

to consider in what sense mathematical objects are real as well as what the nature of

mathematical objects is.

My conclusion is that objects of mathematics are procedures expressed by a formal sys-

tem, not something independent of or referred to by mathematical language. Nevertheless

they can be regarded as real in some weaker sense.

Whether you call procedures real or not may be only a matter of different viewpoints.

However, discoveries of different viewpoints have been triggering important advances in

mathematics. In particular, to view a procedure as an object gave rise to lambda calculus,

related programming language, and model theory such as denotational semantics6. In this

sense also, realism in mathematics has certain significance.
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