主論文の要旨

論文題目
ヒメツリガネゴケにおける色素体シグマ因子遺伝子の機能解析

氏名
市川和洋

論文内容の要旨

色素体シグマ因子は、色素体遺伝子の発現を制御する重要なタンパク質の一つである。長らくシグマ因子はバクテリアのみに存在すると考えられてきたが、近年、シロイヌナズナをはじめとする各種植物の核ゲノム上にパラログ遺伝子が存在し、植物においても多重遺伝子族を形成していることが明らかになった（シロイヌナズナでは、AtSIG1からAtSIG6の6種類が存在する）。これらの遺伝子は、系統学的な解析からSig1グループ、Sig2グループ、Sig3グループおよびSig6グループの5つのグループに分けることができる。色素体シグマ因子をコードするcDNAあるいは遺伝子が最初に同定されてから約10年が経過したが、色素体シグマ因子の詳細な生理的機能は不明な点が多く、最近になって、シロイヌナズナの遺伝子破壊株とアンチセンス株の解析などから、一部の色素体シグマ因子について生理的機能が徐々に解明されてきつつある。しかし、被子植物以外の陸上植物では、同定された色素体シグマ因子の数は少なく、解析もほとんど進んでいない。特に色素体シグマ因子の生理的機能の進化的な観点からの比較解析の報告は皆無である。

コケ植物は4億数千万年前に植物の祖先から分岐し、原始的な特徴を残す植物である。コケ植物を用いた研究により、植物の進化の観点から重要な知見が得られると期待できる。ヒメツリガネゴケ（Physcomitrella patens）は、陸上植物では唯一、高精度な遺伝子ターゲッティングが可能であることや、国際共同チームによって進行していたゲノムプロジェクトが完了し、網羅的なDNA配列情報が入手可能であることなどにより、in vivoでの遺伝子の機能解析に最適なモデル植物の一種である。ヒメツリガネゴケからは、既にHaraらによってPpSig1とPpSig2の2つの色素体シグマ因子遺伝子がクローニングされている。PpSig1がコードするタンパク質PpSIG1は被子植物のSig1グループに、PpSig2がコードするタンパク質PpSIG2はSig2グループに属し、両遺伝子ともに光による転写誘導を受けることなどが彼らによって報告された。筆者はず、ヒメツリガネゴケの新たなシグマ因子をコードするcDNAのクローニングを行った。このcDNAの予想コードタンパク質は、多様な植物の色素体シグマ因子
のアミノ酸配列を用いて作製した系統樹において、シロイヌナズナのAtSIG5とクラスターを形成した。また、PpSIG5とAtSIG5のアミノ酸配列のアラインメント上でのインターロンの挿入位置は互いにほぼ一致した。これらの結果から、新たに分離したcDNAが被子植物のSig5グループに近縁な色素体シグマ因子をコードすることが分かったので、対応する遺伝子をPpSIG5と名づけた。

次に、筆者は自然環境で観られる光照度の2種類の変化について着目して、ヒメツリガネゴケの3つの色素体シグマ因子PpSig1, PpSig2およびPpSig5の発現を追跡した。日陰から日向への移動や天候の急変のような急激な変動を模した「強光ステップ条件」と、緩やかで周期的な昼夜の変動を模した「明暗サイクル条件」である。強光ステップ条件では、40 μmol m⁻² s⁻¹の光照射条件で生育させたコケの野生型株を、520 μmol m⁻² s⁻¹の光照射条件に移し、3つのPpSigの1時間および3時間後のmRNAレベルを観察した。その結果、PpSig1とPpSig2の発現にはまったく変化がなかったのに対して、PpSig5の発現は強光に特異的に誘導されることが分かった（図①参照）。

図① 強光ステップ条件における3つのPpSigの発現様式

次に明暗サイクル条件（12時間明：12時間暗）では、3つのPpSigの発現パターンは互いに違いがあることが分かった（図②参照）。特にPpSig5の発現は、明期に高く暗期に低い非常に大きな振幅の日周リズムを示した。

図② 明暗サイクル条件における3つのPpSigの異なる発現様式

概日時計の制御によるリズム発現は、恒明あるいは恒暗などの恒常条件において24時間周期で継続する。3つのPpSigの発現制御に概日時計が関与するか否かを検証するため、恒明あるいは恒暗条件において、それぞれの発現を経時的に追跡した。恒明条件では、3つ
のPpSigのどれについても日周リズム発現を確認することはできなかった。一方、恒時条件では、PpSig5の発現が変質型の日周リズムを示した（図3参照）。この結果から、PpSig5のリズム発現は、概日時計による内因性の制御を強く受けていることが確認された。

図3 恒時条件における3つのPpSigの発現様式

強光ステップ条件と明暗サイクル条件という2種類の光照度の動的な変動に対して特徴的発現を示したPpSig5の機能を、さらに直接的に解析することにした。この目的で、遺伝子ターゲッティングによりPpSig5破壊株を作製して、幾つかの色素体遺伝子の発現を解析した。色素体遺伝子の一つであるpsbD遺伝子は、光化学系IIの反応中心D2タンパク質をコードし、光合成の電子伝達系において重要な役割を果たしている。強光ステップ条件では野生型株のpsbDの発現は徐々に上昇した（図4参照）。一方、PpSig5破壊株におけるpsbDの発現はほとんど変動がなく、野生型株で観察された発現上昇は消失していた（図4参照）。これらの結果は、PpSig5は強光に応答して発現し、psbDの発現誘導を制御していることを示している。この制御機構は、シロイヌナズナのSig5グループのシグマ因子AtSig5によるpsbDの転写制御機構とよく似ている。AtSig5は、強光以外に低温、高浸透圧および高塩濃度の様々なストレスによっても発現が誘導される。PpSig5もまたAtSig5と同様に、様々なストレスに応答して発現し、ストレスによって損傷した反応中心タンパク質を補修するために働くことが示唆される。

図4 強光ステップ条件におけるpsbD遺伝子の発現様式

psbDの発現は、明期で高く暗期で低い日周リズムを示し、PpSig1、PpSig2よりもPpSig5に比較的似ている。興味深いことに、PpSig5破壊株においては、明期におけるpsbDのmRNAレベルが野生型株に比べて低下していた（図5参照）。この結果は、PpSig5がpsbDの日周期的なリズム発現、特にその振幅を維持する制御に関与していることを示している。これらは、色素体遺伝子の日周期的な発現に対して色素体シグマ因子が関与することを示した初めての知見である。適切な時間帯に必要な色素体遺伝子のmRNAレベルを上
太陽光の特性についての説明図

太陽光の特性についての説明図

太陽光の特性についての説明図

太陽光の特性についての説明図
昇させることは、効率的な光合成を行う上で生存上有利に働くと考えられる。

図5 明暗条件におけるpsbD遺伝子の発現様式

クリプトクロム（CRY）は、光シグナル（特に青色光シグナル）を感知する光受容体タンパク質の一つである。クリプトクロムは、概日時計の制御機構においては中心振動体の同調に関与する入力系のタンパク質として重要な働きをしている。コケの2つのクリプトクロム遺伝子を破壊したPpCry破壊株を用いた解析では、青色光明暗条件（12時間青色光：12時間暗、青色LEDによる照射、40μmol m⁻² s⁻¹、25℃）において、PpCry破壊株のPsSig5とpsbDの発現の位相が、野生型株に比べて著しく前進していることが分かった（図5参照）。この結果は、PsSig5とpsbDの日内発現がクリプトクロムによって制御されていることを示唆している。PpCry破壊株とPsSig5破壊株を用いたpsbDの明暗サイクル条件での発現解析の結果を考え合わせると、次のような説明が可能である。まず、リズムの入力系の役割であるクリプトクロムによって受容された光情報によって、概日時計の中心振動体の“針”が明暗サイクルに正確に同調する。次に、同調した時計に由来する時間情報がPsSIG5に伝えられる。その結果、周期的に合成されるようになったPsSIG5は色素体へ移行し、psbDのリズム発現を制御する。このように、光→CRY→PsSIG5→psbD、という順番での時間情報の流れが考えられる。

図6 青色光明暗条件（12時間青色光：12時間暗）におけるPsSIG5とpsbD遺伝子の発現様式

本研究において、PsSIG5は強光ステップ条件および明暗サイクル条件という2種類の
→CBZ→C81IC2→CBZ

C81IC2は反応生成物とされ、C81IC2の生成反応は以下のようになる。この反応は、酵素による酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで、酵素反応により生成されるH2Oで。
光照射度の動的変化に適応する上で、シグナル伝達の仲介役を担い、psbD の発現を制御していることが明らかになった（図7参照）。強光ステップ条件のような急激な照射度変化においては、強光シグナルに応答して PpSig5 が特異的に発現し、psbD の発現を誘導することによって、強光ストレスで損傷した光化学系の反応中心タンパク質を補修すると考えられる。一方、明暗サイクル条件では、クリプトクロムにより調節された概日時計の制御を受けて PpSIG5 がリズム発現し、色素体へ移行した後、psbD の日周リズムを制御すると考えられる。つまり PpSIG5 は、自然環境下における多重で動的な光の変化に対して適応する上で、重要な制御因子であると位置づけることができる。

図7 PpSIG5 を介した psbD 遺伝子の発現制御機構のモデル図