原著論文


  1. Numerical simulation of the flow and output of a Savonius hydraulic turbine using lattice Boltzmann method ,
    Uchiyama, T., Seta, T., Iio, S., Ikeda, T., Takamure, K.,
    J. Renewable Sustainable Energy, Vol.16, 2024, 025301.
  2. Changes in power generation performance of an undershot cross-flow hydraulic turbine in an irrigation canal due to snow masses passing through the rotor ,
    Satou, E., Uchiyama, T., Takamure, K., Ikeda, T., Okayama, T., Miyazawa T., Tunashima D.,
    Heliyon, 2023, Vol.9, 2023, e20833.
  3. Collection of Oil Mist using a Baffle Plate-Type Mist Trap,
    Takamure, K., Ando, S., Kato, H., Uchiyama, T., Nakayama, H.,
    Applications in Engineering Science, Vol.15, 2023, 100137.
  4. Inactivation Characteristics of a 280-nm Deep-UV Irradiation Dose on Aerosolized SARS-CoV-2,
    Takamure, K., Iwatani, Y., Amano, H., Yagi, T., Uchiyama, T.,
    Environment International, Vol.177, 2023, 108022.
  5. Simultaneous Measurement of Volumetric Flowrates of Gas–Liquid Bubbly Flow Using a Turbine Flowmeter,
    Uchiyama, T., Miyamoto, S., Horie K., Takamure, K.,
    Sensors, Vol.23, 2023, 4270.
  6. Wake characteristics of sphere with circular uniaxial through-hole arranged perpendicularly to streamwise direction,
    Takamure, K., Kato, H., Uchiyama, T.,
    Powder Technology, Vol.415, 2023, 118175.
  7. Calculation model for water mass entrained by the water exit of a particle using two projected images captured from orthogonal directions,
    Takamure, K., Uchiyama, T.,
    Ocean Engineering, Vol.266, 2022, 112848.
  8. Characteristics of vortex shedding in the wake of a sphere with a uniaxial through-hole,
    Kato, H., Takamure, K., Uchiyama, T.,
    AIP Advances, Vol.12, 2022, 105112.
  9. Characteristics of Collection and Inactivation of Virus in Air Flowing inside a Winding Conduit Equipped with 280 nm Deep UV-LEDs,
    Takamure, K., Sakamoto, Y., Iwatani, Y., Amano, H., Yagi, T., Uchiyama, T.,
    Environment International, Vol.170, 2022, 107580.
  10. Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal,
    Satou, E., Ikeda, T., Uchiyama, T., Okayama, T., Miyazawa T., Takamure, K., Tunashima D.,
    Renewable Energy, Vol.200, 2022, pp.146-153.
  11. Enhancing effect of cone on efficiency of a self-powered IoT-based hydro turbine,
    Takamure, K., Uchiyama, T., Horie, K., Nakayama, H.,
    Advances in Mechanical Engineering, Vol.14, No.7, 2022, pp.1-9.
  12. Blocking Effect of Desktop Air Curtain on Aerosols in Exhaled Breath,
    Takamure, K., Sakamoto, Y., Yagi, T., Iwatani, Y., Amano, H., Uchiyama, T.,
    AIP Advances, Vol.12, 2022, 055323.
  13. Numerical analysis of effect of Reynolds number on interaction of density-stratified fluid with a vortex ring,
    Cao. L., Takamure, K., Uchiyama, T.,
    Physics of Fluids, Vol.34, 2022, 053314.
  14. 一様流中に置かれた一軸貫通孔を有する球体の後流特性,
    加藤颯,高牟礼光太郎,内山知実,
    日本風工学会論文集, Vol.47,No.1, 2022, pp.1-4.
  15. Falling behavior of hollow particle with uniaxial through-hole: a case study using experiments and numerical simulations,
    Takamure, K., Tanaka, J., Kato, H., Uchiyama, T.,
    Powder Technology, Vol.392, 2021, pp.367-374.
  16. Vortex-in-Cell simulation of the flow and performance of a Savonius hydraulic turbine with S-shaped blades,
    Takamure, K., Uchiyama, T., Wang, H., Iio, S., Ikeda, T.,
    Journal of Renewable and Sustainable Energy, Vol.13, 2021, 044501.
  17. Behavior of a solid sphere launched vertically upwards in water and its interaction with the air-water interface,
    Takamure, K., Uchiyama, T.,
    Ocean Engineering, Vol.235, 2021, 109282.
  18. Effect of Froude number on the motion of a spherical particle launched vertically upward in water,
    Takamure, K. and Uchiyama, T.,
    Experimental Thermal and Fluid Science, Vol.128, No.1, 2021, 110453.
  19. Mixing of a Two-Layer Density-Stratified Fluid by Two Vortex Rings Successively Launched towards the Density Interface,
    Cao, L., Takamure, K., Degawa T., Uchiyama, T.,
    Journal of Visualization, Vol.24, No.4, 2021, pp.683-697.
  20. Falling of a spherical particle in fine-bubble plume and fine-bubble behavior around the particle,
    Takamure, K., Kawasaki, Y., Degawa, T., Uchiyama, T.,
    Fluid Dynamics, Vol.56, No.5, 2021, pp.612-621.
  21. Development of a self-powered wireless sensor node to measure the water flowrate by using a turbine flowmeter,
    Uchiyama, T., Takamure, K., Okuno Y. and Sato, E.,
    Internet of Things, Vol.13, 2021, 100327
  22. Effect of density of a sphere launched vertically in water on the water-surface behavior and sphere motion in air,
    Takamure, K. and Uchiyama, T.,
    Physics of Fluids, Vol.32, 2020, 113313
  23. Effect of cylinders on the characteristics of a fine-bubble plume,
    Takamure, K., Degawa, T., Kano, R., and Uchiyama, T.,
    Journal of Fluid Science and Technology,Vol.15, 2020, JFST0019.
  24. 遮へい板が設置されたサボニウス水車の流れと性能の数値シミュレーション,
    高牟礼光太郎, 谷強, 出川智啓, 内山知実, 飯尾昭一郎, 池田敏彦,
    日本機械学会論文集,Vol.86,2020年, p20-00181.
  25. Dynamics of a sphere launched vertically in water,
    Takamure, K. and Uchiyama, T.,
    Powder Technology, Vol.372, 2020, pp.246-257.
  26. Dynamics of impact cratering on granular bed by hydrogel sphere,
    Matsuda, Y., Kamiya, R., Yamaguchi, H., and Uchiyama, T.,
    Physics of Fluids, Vol.32, 2020, 067112.
  27. Air–water interface dynamics and energy transition in air of a sphere passed vertically upward through the interface,
    Takamure, K. and Uchiyama, T.,
    Experimental Thermal and Fluid Science, Vol.118, 2020, 110167.
  28. Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization,
    Uchiyama, T., Gu, Q., Degawa, T., Iio, S., Ikeda, T., and Takamure, K.,
    Renewable Energy, Vol.157, 2020, pp.482-490.
  29. Energy transition in air of a sphere launched vertically upward in water,
    Takamure, K. and Uchiyama, T.,
    Ocean Engineering, Vol.207, 2020,107426.
  30. Motion of a spherical particle in a microbubble plume and the behavior of microbubbles around the particle,
    Uchiyama, T., Kawasaki, Y., Degawa, T. and Takamure, K.,
    J. Mech. Eng. Sci., IMechE, Vol.234, 2020, pp.1340-1350.
  31. Numerical simulation of bubbly flow around a cylinder by semi-Lagrangian‒Lagrangian method,
    Nguyen, V. L., Degawa, T., Uchiyama, T. and Takamure, K.,
    Int. J. Numerical Methods for Heat and Fluid Flow, Vol.29, 2019, pp.4660-4683.
  32. Deformation of a vortex ring caused by its impingement on a sphere,
    Nguyen, V. L., Takamure, K. and Uchiyama, T.,
    Physics of Fluids, Vol.31, 2019, 107108.
  33. Numerical simulation of fluid forces on moving solid body by the vortex in cell method with volume penalization,
    Degawa, T., Gu, Q., Uchiyama, T. and Takamure, K.,
    Aerospace Science and Technology, Vol.94, 2019, 105360.
  34. Numerical simulation of the interaction between a vortex ring and a bubble plume,
    Nguyen, V. L., Degawa, T. and Uchiyama, T.,
    Int. J. Numerical Methods for Heat and Fluid Flow, Vol.29, 2019, pp.3192-3224.
  35. Numerical simulation of annular bubble plume by vortex in cell method,
    Nguyen, V. L., Degawa, T. and Uchiyama, T.,
    Int. J. Numerical Methods for Heat and Fluid Flow, Vol.29, 2019, pp.1103-1131.
  36. Numerical simulation of mixing by interaction of a vortex ring with a density interface,
    Degawa, T. and Uchiyama, T.,
    J. Energy and Power Eng., Vol.12, 2018, pp.565-577.
  37. Mixing of density-stratified fluid in a cylindrical tank by a diagonal jet,
    Degawa, T., Uno, K. and Uchiyama, T.,
    J. Energy and Power Eng., Vol.12, 2018, pp.436-443.
  38. Improvements to the convection scheme in the vortex particle method using a semi-Lagrangian method,
    Degawa, T. and Uchiyama, T.,
    J. Algorithms and Computational Technology, Vol.12, 2018, pp.223-233.
  39. Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter,
    Uchiyama, T., Honda, S. and Degawa, T.,
    Renewable Energy, Vol.126, 2018, pp.545-551.
  40. Numerical simulation of jet issuing diagonally upward into density-stratified fluid in cylindrical tank,
    Degawa, T., Uchiyama, T., Aozasa, I., Ishikawa, A. and Motoyama, K.,
    J. Power and Energy Eng., Vol. 6, No. 3, 2018, pp. 38-52.
  41. 熱流動解析に対する境界条件強制型Smoothed Profile-Lattice Boltzmann Methodの提案,
    瀬田剛・内山知実・高野登,
    計算数理工学論文集,Vol.17,2017年, pp.25-30.
  42. Smoothed profile-lattice Boltzmann method for non-penetration and wetting boundary conditions in two and three dimensions,
    Seta, T., Uchiyama, T., and Takano, N.,
    Computers & Fluids, Vol.159, 2017, pp. 64-80.
  43. Generation and transport of solid particle clusters using a vortex ring launched into water,
    Uchiyama, T., Yano, C., and Degawa, T.,
    Int. J. Chemical Engineering and Applications, Vol.8, No.4, 2017, pp. 253-260.
  44. Behavior of a jet issuing diagonally upward into two-layer density-stratified fluid in a cylindrical tank,
    Degawa, T., Fukue, S., Uchiyama, T., Ishikawa, A., and Motoyama, K.,
    J. Flow Control, Measurement & Visualization, Vol.5, 2017, pp.51-64.
  45. Control of air bubble cluster by a vortex ring launched into still water,
    Uchiyama, T. and Kusamichi, S.,
    Int. J. Chemical Engineering and Applications, Vol.8, No.1, 2017, pp.37-46.
  46. A feasibility study of power generation from sewage using a hollowed pico-hydraulic turbine,
    Uchiyama, T., Honda, T., Okayama, T. and Degawa, T.,
    Engineering, Vol.2, 2016, pp.510-517.
  47. Numerical simulation of flow around two tandem cylinders by vortex in cell method combined with immersed boundary method,
    Nguyen, V. L., Lavi, R. Z and Uchiyama, T.,
    Advances and Applications in Fluid Mechanics, Vol.19, No.4, 2016, pp.781-804.
  48. Effects of clearance between rotor and ground on the performance of an open cross-flow-type nano-hydraulic turbine,
    Uchiyama, T., Mizoguchi, S., Iio, S., Katayama, Y. and Ikeda, T.,
    J. Energy and Power Engineering, Vol.10, 2016, pp.465-473.
  49. Numerical simulation of the interactions between a vortex ring and solid particles suspended above a horizontal wall,
    Uchiyama, T. and Shimada, S.,
    Powder Technology, Vol.301, 2016, pp.966-980.
  50. Experimental study of flow around a circular cylinder inside a bubble plume,
    Uchiyama, T. and Ishiguro, Y.,
    Advances in Chem. Eng. Sci., Vol.6, 2016,pp.269-280.
  51. Study of the interactions between rising air bubbles and vortex core of swirling water flow around vertical axis,
    Uchiyama, T. and Ishiguro, Y.,
    Chemical Engineering Science, Vol.142, 2016, pp.137-143.
  52. Numerical study on the flow and performance of an open cross-flow mini-hydraulic turbine,
    Uchiyama, T., Uehara, S., Fukuhara, H., Iio, S. and Ikeda, T.,
    J. Power and Energy, Proc. IMechE Part A, Vol.229(8), 2015, pp.968-977.
  53. Numerical study of the entrainment and transport of gas bubbles by a vortex ring,
    Uchiyama, T. and Yoshii, Y.,
    J. Chemical Engineering & Process Technology, Vol.6, 2015, Article ID 245.
  54. Investigation of blade angle of an open cross-flow runner,
    Katayama, Y., Iio, S., Veerapun, S. and Uchiyama, T.,
    Int. J. Turbo Jet-Engines, Vol. 32, 2015, pp.65-72.
  55. Study of the jet-induced mixing of two-layer density-stratified fluid in a rectangular tank,
    Shakouchi, S., Fukue, S., Uchiyama, T.,
    J. Energy and Power Engineering, Vol.9, 2015, pp.117-127.
  56. Numerical simulation of bubbly flow by an improved vortex in cell method,
    Uchiyama, T. and Yoshii Y., Chen, B. and Wang, Z.,
    Advances and Applications in Fluid Mechanics, Vol.17, 2015,pp.91-114.
  57. Numerical simulation of jet flow issued into density-stratified fluid by Vortex in Cell method,
    Shakouchi, S., Shimada, S., Uchiyama, T.,
    Advances and Applications in Fluid Mechanics, Vol.17, 2015,pp.115-134.
  58. Investigation of the behavior of a jet issued into two-layer density-stratified fluid,
    Shakouchi, S., Fukue, S., Uchiyama, T.,
    J. Flow Control, Measurement & Visualization, Vol.3, 2015, pp.1-9.
  59. Effect of flow condition on undershot water wheel performance,
    Katayama, Y., Iio, S., Uchiyama, T. and Ikeda, T.,
    International Review of Mechanical Engineering, Vol. 8, 2014, pp.1005-1011.
  60. Numerical simulation of air-water bubbly jet issuing from a square nozzle by a vortex in cell method,
    Uchiyama, T. and Kishimoto, Y.,
    J. Chem. Eng. Process Technol., Vol.5, 2014, 1000207.
  61. Numerical study of the mixing of density-stratified fluid with a jet,
    Shakouchi, S., Shimada, S., Uchiyama, T.,
    J. Mechanics Engineering and Automation, Vol.4, 2014, pp.789-798.
  62. Numerical simulation of water flow through nano-hydraulic turbine driven by rapid and shallow stream,
    Uchiyama, T., Uehara, S., Iio, S., Ikeda, T., and Ide, Y.,
    J. Energy and Power Engineering, Vol.8, 2014, pp.1663-1672.
  63. Numerical simulation of bubble cluster induced flow by three-dimensional vortex-in-cell method,
    Chen, B., Wang, Z. and Uchiyama, T.,
    Trans. ASME, J. Fluids Eng., Vol.136, 2014, pp.081301-1 - 081301-16.
  64. Numerical simulation of the interactions between a vortex pair and solid particles near a wall,
    Uchiyama, T. and Shimada, S.,
    Powder Technology, Vol.257, 2014, pp.55-67.
  65. Direct numerical simulation of a turbulent channel flow by an improved vortex in cell method,
    Uchiyama, T., Yoshii, Y. and Hamada, H.,
    Int. J. Numerical Methods for Heat and Fluid Flow, Vol.24, 2014, pp.103-123.
  66. Numerical simulation of a rectangular jet by the vortex in cell method,
    Uchiyama, T., Kobayashi, M., Iio, S., Ikeda, T., Yoshii Y.,
    Int. J. Transport Phenomena, Vol.13, 2014, pp.245-255.
  67. Experimental investigation of the interaction between rising bubbles and swirling water flow,
    Uchiyama, T. and Sasaki, S.,
    Int. J. Chem. Eng., Vol.2014, 2014, Article ID 358241.
  68. Numerical simulation of rotating turbulent channel flow by vortex in cell method,
    Uchiyama, T., Hamada, H., Degawa, T.,
    The Open Transport Phenomena J., Vol.5, 2013, pp.30-41.
  69. Direct numerical simulation of a jet issuing from rectangular nozzle by the vortex in cell method,
    Uchiyama, T., Kobayashi, M., Iio, S. and Ikeda, T.,
    Open J. Fluid Dynamics, Vol.3, 2013, pp.321-330.
  70. Numerical simulation of the interaction between vortex ring and bubble plume,
    Wang, Z., Uchiyama, T. and Chen, B.,
    Applied Mathematical Modelling, Vol.37, 2013, pp.10007-10026.
  71. Numerical simulation of water flow through a nano-hydraulic turbine of waterfall-type by particle method,
    Uchiyama, T., Fukuhara, H., Iio, S. and Ikeda, T.,
    Int. J. Rotating Machinery, Vol.2013, 2013,Article ID 473842.
  72. Interaction of bubbles with vortex ring launched into bubble plume,
    Uchiyama, T. and Kusamichi, S.,
    Advances in Chemical Engineering and Science, Vol.3, 2013, pp.207-217.
  73. Jet flapping control with acoustic excitation,
    Iio, S., Hirashita, K., Katayama, Y., Haneda, Y., Ikeda, T. and Uchiyama, T.,
    J. Flow Control, Measurement and Visualization, Vol.1, 2013, pp.49-56.
  74. Numerical simulation of particle-laden gas flow by vortex in cell method,
    Uchiyama, T.,
    Powder Technology, Vol.235, 2013, pp.376-385.
  75. Numerical Simulation of Interaction between a Vortex Ring and Gas Bubbles,
    Uchiyama, T.,
    Fortschritt-Berichte VDI, Reihe 3, Nr. 929, pp.36-50, VDI Verlag, 2012.
  76. Vortex in Cell法による気泡流の数値シミュレーション,
    内山知実・吉井佑太郎,
    日本機械学会論文集,77巻778号B編,2011年,pp.1301-1313.
  77. Grid-Free Vortex Method for Particle-Laden Gas Flow,
    Uchiyama, T.,
    Fluid Dynsmics & Material Processing, Vol.7, No.4, 2011, pp.371-388.
  78. Vortex in Cell法による平行平板間乱流の直接数値シミュレーション,
    内山知実・濱田廣貴・吉井佑太郎,
    日本機械学会論文集,77巻777号B編,2011年,pp.1178-1188.
  79. 非圧縮性流れ解析に対するVortex in Cell法の改良,
    内山知実・吉井佑太郎,
    日本機械学会論文集,77巻775号B編,2011年,pp.715-724.
  80. Numerical Simulation for the Transport of Solid Particles with a Vortex Ring,
    Yagami, H. and Uchiyama, T.,
    Advanced Powder Technology, Vol.22, 2011, pp.115-123.
  81. Three-Dimensional Vortex Method for the Simulation of Bubbly Flow,
    Uchiyama, T. and Matsumura, S.,
    Trans. ASME, J. Fluids Eng., Vol.132, 2010, pp.101402-1 - 101402-8.
  82. 固体粒子が付加された低Reynolds数気相噴流の渦法解析,
    八神寿徳・内山知実,
    日本機械学会論文集,76巻766号B編,2010年,pp.953-960.
  83. 渦法による非蒸発噴霧流の数値解析,
    内山知実,
    混相流,23巻5号,2010年,pp.507-514.
  84. 三次元渦法による気泡流の数値解析,
    内山知実・松村彰士,
    日本機械学会論文集,76巻762号B編,2010年,pp.211-218.
  85. Numerical Simulation of Non-Evaporating Spray Jet by Vortex Method,
    Uchiyama, T.,
    Atomization and Sprays, Vol.19, No.10, 2009, 917-928.
  86. Vortex Simulation for Non-axisymmetric Collision of a Vortex Ring with Solid Particles,
    Uchiyama, T. and Yagami, H.,
    Advanced Powder Technology, Vol.20, 2009, pp.447-454.
  87. Vortex Simulation of Bubble Plume around a Rectangular Cylinder,
    Uchiyama, T. and Degawa, T.,
    Int. J. Transport Phenomena, Vol.11, No.3, 2009, pp.219-232.
  88. Numerical Simulation of Low Reynolds Number Particle-Laden Gas Jet by Vortex Method,
    Uchiyama, T. and Yagami, H.,
    J. Fluid Science and Technology, JSME, Vol.4, No.2, 2009, pp.335-347.
  89. 固気二相流に対する三次元グリッドフリー渦法,
    内山知実・成瀬正章,
    日本機械学会論文集,75巻750号B編,2009年,pp.219-226.
  90. Numerical Simulation for the Collision between a Vortex Ring and Solid Particles,
    Uchiyama, T. and Yagami, H.,
    Powder Technol., Vol.188, 2008, pp.73-80.
  91. 渦輪による固体粒子群の輸送の数値シミュレーション,
    八神寿徳・内山知実,
    粉体工学会誌,45巻12号,2008年,pp.827-834.
  92. 渦法を用いた固気二相流の二次元グリッドフリー解法,
    内山知実・成瀬正章,
    日本機械学会論文集,74巻742号B編,2008年,pp.1324-1331.
  93. Numerical Simulation of Plane Bubble Plume by Vortex Method,
    Uchiyama, T. and Degawa, T.,
    J. Mechanical Engineering Science, IMechE, Vol.222, No.7, 2008, pp.1193-1201.
  94. Particle Simulation of the Plume Diffusion Field around a Circular Cylinder,
    Uchiyama, T. Yagami, H. and Sugiyama, M.,
    Int. J. Modelling and Simulation, Vol.28, No.3, 2008, pp.323-328.
  95. Two-Dimensional Vortex Simulation of Particulate Air Flow Induced by Free Falling Particles,
    Uchiyama, T. and Naruse, M.,
    Int. J. Engineering Systems Modelling and Simulation, Vol.1, No.1, 2008, pp.30-38.
  96. Numerical Simulation of Bubbly Flow around Two Tandem Square-Section Cylinders by Vortex Method,
    Degawa, T. and Uchiyama, T.,
    J. Mechanical Engineering Science, IMechE, Vol.222, No.2, 2008, pp.225-234.
  97. Vortex Simulation of the Bubbly Flow around a Hydrofoil,
    Uchiyama, T. and Degawa, T.,
    Int. J. Rotating Machinery, Vol.2007,2007,Article ID 72697, 9 pages.
  98. 渦法による平面気泡プルームの数値解析,
    出川智啓・内山知実,
    日本機械学会論文集,73巻727号B編,2007年,pp.703-710.
  99. 渦輪と固体粒子群の干渉の数値解析,
    八神寿徳・内山知実,
    混相流研究の進展2,2007年,pp.181-188.
  100. 角柱周りの気泡プルームの渦法解析,
    出川智啓・内山知実,
    混相流研究の進展2,2007年,pp.149-156.
  101. Numerical Study on a Compound Round Jet Controlled by Loading Solid Particles,
    Uchiyama, T. and Fukase, A.,
    Int. J. Transport Phenomena, Vol.9, 2007, pp.19-32.
  102. Numerical Simulation of Plane Mixing Layer by Three-Dimensional Vortex Method,
    Yagami, H. and Uchiyama, T.,
    Int. J. Turbo & Jet Engines, Vol.24, 2007, pp.93-101.
  103. Numerical Simulation of Reacting Plane Mixing Layer by Particle Method,
    Uchiyama, T. and Naruse, M.,
    Chem. Eng. Sci., Vol.61, 2006, pp.7299-7308.
  104. Numerical Simulation of Particle-Laden Plane Mixing Layer by Three-Dimensional Vortex Method,
    Yagami, H. and Uchiyama, T.,
    JSME Int. J., Ser. B, Vol.49, No.4, 2006, pp.1027-1035.
  105. Numerical Simulation for Gas-Liquid Two-Phase Free Turbulent Flow Based on Vortex in Cell Method,
    Uchiyama, T. and Degawa, T.,
    JSME Int. J., Ser. B, Vol.49, No.4, 2006, pp.1008-1015.
  106. Vortex Simulation of Gas-Particle Two-Phase Compound Round Jet,
    Uchiyama, T. and Fukase, A.,
    Powder Technol., Vol.165, 2006, pp.83-91.
  107. Vortex in Cell法による気液二相自由乱流の数値解析,
    内山知実・出川智啓,
    日本機械学会論文集,72巻718号B編,2006年,pp.1418-1425.
  108. Three-Dimensional Vortex Simulation for Particulate Jet Generated by Free Falling Particles,
    Uchiyama, T. and Naruse, M.,
    Chem. Eng. Sci., Vol.61, 2006, pp.1913-1921.
  109. Three-Dimensional Vortex Simulation of Particle-Laden Air Jet,
    Uchiyama, T. and Fukase, A.,
    Chem. Eng. Sci., Vol.61, 2006, pp.1767-1778.
  110. Numerical Study on the Performance of a Micropump with a Wiggling Blade,
    Uchiyama, T. and Kikuyama, K.,
    J. Mechanical Engineering Science, IMechE, Vol.219, 2005, pp.1069-1077.
  111. 自由落下粒子群が形成する粒子噴流の三次元渦法解析,
    内山知実・成瀬正章,
    日本機械学会論文集,71巻707号B編,2005年,pp.1738-1745.
  112. Numerical Study on the Propulsive Performance of a Submerged Wiggling Micromachine in Straight Conduit,
    Uchiyama, T. and Kikuyama, K.,
    J. Mechanical Engineering Science, IMechE, Vol.219, 2005, pp.409-418.
  113. Three-Dimensional Vortex Method for Gas-Particle Two-Phase Compound Round Jet,
    Uchiyama, T. and Fukase, A.,
    Trans. ASME, J. Fluid Eng., Vol.127, 2005年, pp.32-40.
  114. 気泡流中におけるマイクロ屈曲翼の推進特性の数値シミュレーション,
    内山知実・菊山功嗣,
    ターボ機械,33巻4号,2005年, pp.230-240.
  115. Numerical Simulation for Diffusion of Matter in Compound Round Jet by Three-Dimensional Particle Method,
    Uchiyama, T. and Ichikawa, A.,
    Chem. Eng. Sci., Vol.60, 2005, pp.337-345.
  116. Numerical Analysis of Gas-Particle Two-Phase Wake Flow by Vortex Method,
    Uchiyama, T. and Yagami, H.,
    Powder Technol., Vol.149, 2005, pp.112-120.
  117. Numerical Analysis of Particulate Jet Generated by Free Falling Particles,
    Uchiyama, T.,
    Powder Technol., Vol.145,2004, pp.123-130.
  118. Numerical Simulation for the Propulsion Performance of a Submerged Wiggling Micromachine,
    Uchiyama, T. and Kikuyama, K.,
    J. Micromech. Microeng., Vol.14, 2004, pp.1537-1543.
  119. 三次元渦法による固気二相同軸円形噴流の数値解析,
    内山知実・深瀬昭仁,
    日本機械学会論文集,70巻696号B編,2004年,pp.1957-1964.
  120. Numerical Simulation for Gas-Particle Two-Phase Free Turbulent Flow Based on Vortex in Cell Method,
    Uchiyama, T. and Naruse, M.,
    Powder Technol., Vol.142, 2004, pp.193-208.
  121. 二次元混合層における物質拡散の粒子法解析,
    内山知実・村上賢司・大槻直洋,
    日本機械学会論文集,70巻692号B編,2004年,pp.839-846.
  122. Three-Dimensional Vortex Simulation of Bubble Dispersion in Excited Round Jet,
    Uchiyama, T.,
    Chem. Eng. Sci., Vol.59, 2004, pp.1403-1413.
  123. Numerical Prediction of the Round Jet in a Co-Flowing Stream by Three-Dimensional Vortex Method,
    Uchiyama, T.,
    Int. J. Turbo & Jet Engines, Vol.20, No.3, 2003, pp.235-244.
  124. Vortex in Cell法による固気二相自由乱流の数値解析,
    内山知実・成瀬正章,
    日本機械学会論文集,69巻686号B編,2003年,pp.2200-2207.
  125. 自由落下粒子群が形成する粒子噴流の数値解析,
    内山知実・北野佳伸,
    日本機械学会論文集,69巻684号B編,2003年,pp.1737-1745.
  126. Numerical Study on the Bubbly Flow around a Hydrofoil in Pitching and Heaving Motions,
    Uchiyama, T.,
    J. Mechanical Engineering Science, IMechE, Vol.217, 2003, pp.811-820.
  127. Vortex Simulation of Slit Nozzle Gas-Particle Two-Phase Jet,
    Uchiyama, T. and Naruse, M.,
    Powder Technology, Vol.131, 2003, pp.156-165.
  128. Numerical Prediction of a Plume Diffusion Field around a Circular Cylinder by the Particle Method,
    Uchiyama, T. and Okita, T.,
    Advances in Environmental Research, Vol.7, 2003, pp.573-581.
  129. Numerical Prediction of Added Mass and Damping for a Cylinder Oscillating in Confined Incompressible Gas-Liquid Two-Phase Mixture,
    Uchiyama, T.,
    Nuclear Engineering and Design, Vol.222, 2003, pp.68-78.
  130. Numerical Study on the Propulsive Performance of a Wiggling Blade in Bubbly Flow,
    Uchiyama, T.,
    J. Mechanical Engineering Science, IMechE, Vol.216, 2002, pp.1187-1196.
  131. Numerical Simulation of Gas-Particle Two-Phase Mixing Layer by Vortex Method,
    Uchiyama, T. and Naruse, M.,
    Powder Technology, Vol.125, 2002, pp.111-121.
  132. Finite Element Analysis of Bubbly Flow Around an Oscillating Square-Section Cylinder,
    Uchiyama, T.,
    Finite Elements in Analysis and Design, Vol.38, 2002, pp.803-821.
  133. Finite Element Method of Gas-Liquid Two-Phase Flow Across an In-Line Tube Bundle,
    Uchiyama, T.,
    Hybrid Methods in Engineering, Vol.2, No.4, 2002, pp.355-372.
  134. Numerical Prediction of Bubbly Flow Around an Oscillating Hydrofoil by Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Int. J. Rotating Machinery, Vol.8, No.4, 2002, pp.295-304.
  135. 渦法によるスリットノズル固気二相噴流の数値シミュレーション,
    成瀬正章・内山知実,
    混相流,15巻3号,2001年,pp.280-287.
  136. A Numerical Method for Gas-Solid Two-Phase Free Turbulent Flow Using a Vortex Method,
    Uchiyama, T. and Naruse, M.,
    Powder Technology, Vol.119, 2001, pp.206-214.
  137. ALE Finite Element Method for Gas-Liquid Two-Phase Flow Including Moving Boundary Based on an Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Nuclear Engineering and Design, Vol.205, 2001, pp.69-82.
  138. Numerical Simulation of Gas-Solid Two-Phase Free Turbulent Flow by a Vortex Method,
    Uchiyama, T., Minemura, K. and Naruse, M.,
    VORTEX METHODS (Eds. K. Kamemoto and M. Tsutahara), World Scientific, 2000, pp.161-168.
  139. ALE有限要素法による移動境界を含む気液二相流の数値解析(非圧縮性二流体モデルを用いた解法),
    内山知実・峯村吉泰,
    日本機械学会論文集,66巻647号B編,2000年,pp.1627-1635.
  140. 渦法による固気二相自由乱流の数値解法(数値モデルと二次元混合層への適用),
    内山知実・成瀬正章・峯村吉泰,
    日本機械学会論文集,66巻651号B編,2000年,pp.2853-2860.
  141. 三次元一般座標系に対するCIP法粘性流解法,
    高下和浩・峯村吉泰・内山知実,
    日本機械学会論文集,66巻643号B編,2000年,pp.755-760.
  142. Numerical Analysis of Air-Water Two-Phase Flow Across a Staggered Tube Bundle Using an Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Nuclear Science and Engineering, Vol.134, No.3, 2000, pp.281-292.
  143. Petrov-Galerkin Finite Element Method for Gas-Liquid Two-Phase Flow Based on an Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Nuclear Engineering and Design, Vol.193, 1999, pp.145-157.
  144. 千鳥配列円管群における直交気液二相流の数値解析,
    内山知実・峯村吉泰,
    日本機械学会論文集, 65巻636号B編, 1999年, pp.2611-2618.
  145. Numerical Simulation of Gas-Liquid Two-Phase Flow Around a Rectangular Cylinder by the Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Nuclear Science and Engineering, Vol.133, No.1, 1999, pp.92-105.
  146. Accuracy of Large Eddy Simulation for Turbulent Flow by the Finite Element Method,
    Uchiyama, T.,
    J. Mechanical Engineering Science, IMechE, Vol.212, 1998, pp.643-650.
  147. Numerical Simulation of Cavitating Flow Using the Upstream Finite Element Method,
    Uchiyama, T.,
    Applied Mathematical Modelling, Vol.22, 1998, pp.235-250.
  148. Discretization Schemes of Advection Term in the Finite Element Method for Incompressible Navier-Stokes Equation,
    Uchiyama, T.,
    J. Applied Mechanics and Engineering, Vol.3, No.1, 1998, pp.39-53.
  149. Prediction of Air-Water Two-Phase Flow Performance of a Centrifugal Pump Based on One-Dimensional Two-Fluid Model,
    Minemura, K., Uchiyama, T., Shoda, S. and Egashira, K.,
    Trans. ASME, J. Fluid Eng., Vol.120, No.2, 1998, pp.327-334.
  150. 上流型有限要素法による非圧縮性二流体モデルの数値解析,
    内山知実・峯村吉泰,
    日本機械学会論文集, 64巻618号B編, 1998年, pp.420-427.
  151. Fault Diagnostic Method for Pump Running Conditions Based on Process Modeling and Neural Network,
    Uchiyama, T., Kallweit, S. and Siekmann, H.,
    Int. J. Rotating Machinery, Vol.4, No.1, 1998, pp.49-59.
  152. Numerical Analysis of an Incompressible Two-Fluid Model by Finite Element Method based on a Fractional Step Method,
    Uchiyama, T.,
    Computer Modeling and Simulation in Engineering, Vol.2, No.4, 1997, pp.363-385.
  153. 有限要素法による乱流のLarge Eddy Simulation,
    内山知実,
    流体熱工学研究, 32巻1号, 1997年, pp.15-25.
  154. 一次元粘性二流体モデルによるターボ形ポンプの気液二相流性能の予測法,
    峯村吉泰・内山知実・木下克彦・劉林・正田伸次・江頭和幸,
    日本機械学会論文集, 63巻611号B編, 1997年, pp.2377-2385.
  155. Fractional Step法に基づく有限要素法による非圧縮性二流体モデルの数値解析,
    内山知実,
    混相流, 11巻2号, 1997年, pp.141-150.
  156. Discretization Schemes of the Finite Element Method for Advection Terms of an Incompressible Two-Fluid Model,
    Uchiyama, T.,
    Computer Modeling and Simulation in Engineering, Vol.2, No.2, 1997, pp.145-161.
  157. Finite Element Method for Gas-Liquid Two-Phase Flow Based on an Incompressible Two-Fluid Model,
    Uchiyama, T. and Minemura, K.,
    Computer Modeling and Simulation in Engineering, Vol.2, No.1, 1997, pp.23-37.
  158. 正方形断面をもつ回転流路内で発達する気泡流に対する三次元乱流解析,
    峯村吉泰・呉景春・内山知実,
    日本機械学会論文集, 62巻603号B編, 1996年, pp.3784-3791.
  159. 有限要素法による非圧縮性二流体モデルの数値解析(数値解法と円柱まわりの流れ解析),
    内山知実・峯村吉泰,
    日本機械学会論文集, 62巻595号B編, 1996年, pp.977-984.
  160. 固液二相流時のポンプケーシング摩耗量の数値予測,
    峯村吉泰・鐘原・内山知実,
    日本機械学会論文集, 61巻587号B編, 1995年, pp.2571-2578.
  161. 回転場におかれた直管内気泡流に対する数値解析(レイノルズ応力に混合距離理論を用いた解析),
    内山知実・峯村吉泰・江村武,
    日本機械学会論文集, 60巻577号B編, 1994年, pp.2967-2975.
  162. 空洞を伴う気泡流モデルによる二相流ポンプの解析(羽根出口角度と回転数の影響),
    峯村吉泰・内山知実,
    日本機械学会論文集, 60巻571号B編, 1994年, pp.920-925.
  163. Three-Dimensional Calculation of Air-Water Two-Phase Flow in a Centrifugal Pump Based on a Bubbly Flow Model with Fixed Cavity,
    Minemura, K. and Uchiyama, T.,
    JSME Int. Journal, Series B, Vol.37, No.4, 1994, pp.726-735.
  164. Experimental Investigations on Bubbly Flows in Straight Channel Rotated Around Axis Perpendicular to the Channel,
    Minemura, K., Uchiyama, T. and Ishikawa, T.,
    Int. J. Multiphase Flow, Vol.19, No.3, 1993, pp.439-450.
  165. 離散点で傾きが与えられたときの双一次パッチによる曲面形状決定法,
    内山知実・峯村吉泰,
    図学研究, 61号, 1993年, pp.3-8.
  166. Prediction of Pump Performance under Air-Water Two-Phase Flow Based on a Bubbly Flow Model,
    Minemura, K. and Uchiyama, T.,
    Trans. ASME, J. Fluid Eng., Vol.115, No.4, 1993, pp.781-783.
  167. Three-Dimensional Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubbly Flow Model,
    Minemura, K. and Uchiyama, T.,
    Trans. ASME, J. Fluid Eng., Vol.115, No.4, 1993, pp.766-771.
  168. 空洞を伴う気泡流モデルによる渦巻ポンプ羽根車内の気液二相流に対する三次元数値解析,
    峯村吉泰・内山知実,
    日本機械学会論文集, 58巻550号B編, 1992年, pp.1803-1810.
  169. 離散点で与えられた1階偏導関数値に対する数値積分法(FEM形状関数または差分近似式を用いた最小二乗解法),
    内山知実・峯村吉泰,
    日本機械学会論文集, 58巻550号B編, 1992年, pp.1747-1752.
  170. 半径流形回転流路内における気泡流の流動特性,
    峯村吉泰・内山知実・石川武彦,
    日本機械学会論文集, 57巻542号B編, 1991年, pp.3317-3324.
  171. 自由曲線形状境界に第2種境界条件が作用する領域に対する線形一次有限要素解析 (第2報,二次元翼列流れへの適用),
    内山知実・峯村吉泰,
    日本機械学会論文集, 56巻531号B編, 1990年, pp.3351-3359.
  172. 自由曲線形状境界に第2種境界条件が作用する領域に対する線形一次有限要素解析 (第1報,曲線形状を考慮した節点数低減法),
    峯村吉泰・内山知実,
    日本機械学会論文集, 56巻531号B編, 1990年, pp.3343-3350.
  173. Calculation of the three-dimensional behaviour of spherical solid particles entrained in a radial-flow impeller pump,
    Minemura, K. and Uchiyama, T.,
    Journal of Mechanical Engineering Science, Vol.204, 1990, pp.159-168.
  174. 体形状の測定値に基づく洋服型紙の対話形作成,
    峯村吉泰・王徳忠・内山知実,
    日本設計工学会会誌, 24巻10号, 1989年, pp.370-375.
  175. 完全三次元解法によるスクリュ-式遠心ポンプ内の流れと混入粒子の流れ解析,
    峯村吉泰・内山知実・那波隆之・勝田長生,
    日本機械学会論文集, 55巻520号B編, 1989年, pp.3636-3642.
  176. 渦巻ポンプ羽根車内の気液二相流に対する気泡流モデルによる三次元数値解析(第2報,ポンプ性能変化),
    峯村吉泰・内山知実,
    日本機械学会論文集, 55巻516号B編, 1989年,pp.2374-2382.
  177. 渦巻ポンプ羽根車内の気液二相流に対する気泡流モデルによる三次元数値解析(第1報,ボイド率および圧力分布),
    峯村吉泰・内山知実,
    日本機械学会論文集, 55巻516号B編, 1989年,pp.2364-2373.
  178. Flow of Cavitation Bubbles in a Centrifugal Pump Impeller,
    Minemura, K., Murakami, M. and Uchiyama, T.,
    JSME Int. Journal, Series II, Vol.31, No.1, 1988, pp.30-38.
  179. 軸対称物体まわりの気泡の流れに及ぼす履歴効果,
    峯村吉泰・内山知実,
    日本機械学会論文集, 54巻502号B編, 1988年, pp.1325-1331.
  180. 渦巻ポンプ羽根車内のキャビテーション気泡の挙動,
    峯村吉泰・菊山功嗣・村上光清・内山知実,
    日本機械学会論文集, 53巻491号B編, 1987年, pp.1878-1886.
  181. 半径流ポンプ内の固体粒子の流れ(第2報,完全三次元流れ場における運動),
    峯村吉泰・菊山功嗣・村上光清・内山知実,
    日本機械学会論文集, 53巻490号B編, 1987年, pp.1677-1684.